Lecture Notes

Notes

- Fractions that have the different denominators are called unlike fractions, because the denominators are unalike.
- When adding and subtracting fractions with different denominators, we first need to transform one, or both, denominators so that they match.
- We must find the Lowest Common Denominator (LCD). The LCD represents the lowest number possible that both denominators divide into.
- To add or subtract fractions, we need the same unit fraction.
- We must make the fraction(s) bigger so that the denominators match.
- We are "bumping up" the fraction(s), changing their size, to make their denominators become the same number.
- We multiply the denominator by some number that results in the LCD.
- However, we must multiply both numerator and denominator by that same number.
- Multiplying by that same number ensures we maintain the same ratio of the fraction.
- A ratio shows the relative size of two values: numerator with respect to denominator.
- Adding and subtracting fractions with different denominators involves a 4-step process.
- A fraction having unlike denominators is the typical problem you will get.
- If you understand how to add fractions, you will have no problem with how to subtract fractions.
- The only difference between the two is the actual addition step, or subtraction step.
- All other steps are the same for both types of problems.

Add and Subtract Fractions with Unlike Denominators

- Step 1: Find the LCD.
- Step 2: Find equivalent fraction(s).
- Multiply denominator(s) by some number that results in the LCD.
- To maintain the same ratio, multiply the numerator by that same number (n) as the denominator.
- Ex: ${ }_{n \cdot}^{n \cdot \frac{2}{5}}$
- Step 3: Add or subtract numerators. Keep denominators the same.
- Step 4: Reduce, if possible.
- Caution: You cannot "reduce up front" while in addition or subtraction mode. You must wait until the end to reduce.

$$
\begin{aligned}
& \frac{6}{12}-\frac{2}{9} \Rightarrow \frac{3}{3} \cdot \frac{6}{12}-\frac{4}{4} \cdot \frac{2}{9} \Rightarrow \frac{18}{36}-\frac{8}{36} \Rightarrow \frac{10}{36} \Rightarrow \\
& \frac{5}{36} \cdot{ }^{\frac{10}{36}} \circ{ }^{\circ} \Rightarrow \frac{5}{18}
\end{aligned}
$$

- Step 1: Find the LCD: 36.
- Step 2: Find equivalent fraction(s): From $\frac{6}{12}-\frac{2}{9}$ to $\frac{18}{36}-\frac{8}{36}$
- Step 3: Subtract numerators: $\frac{10}{36}$
- Step 4: Reduce: $\frac{5}{18}$

Notes

- In Step 2 when we multiply the denominator(s) by some number that results in the LCD:
- That same number is used up-and-down (numerator and denominator).
- This is to maintain the same ratio of the fraction.
- But a different number is used side-to-side (left fraction and right fraction).
- This is because the denominators of the two fractions are themselves different.
- If the denominators were the same, there would be no need for Step 2 (or Step 1).

Add the fractions.	$\frac{3}{4}+\frac{1}{8}=\frac{7}{8}$ $\frac{3}{4}+\frac{1}{8}$
(Type a simplified fraction.)	

- Step 1: Find the LCD: 8.
- Step 2: Find equivalent fraction(s): From $\frac{3}{4}+\frac{1}{8}$ to $\frac{6}{8}+\frac{1}{8}$
- Step 3: Add numerators: $\frac{7}{8}$
- Step 4: Cannot reduce: $\frac{7}{8}$

Add.
$\frac{7}{11}+\frac{7}{22}$
$\frac{7}{11}+\frac{7}{22}=\frac{21}{22}$
(Simplify your answer. Type a whole number or a simplified fraction.)

Add.
$\frac{1}{2}+\frac{1}{7}$
$\frac{1}{2}+\frac{1}{7}=\frac{9}{14}$
(Type a whole number or a simplified fraction.)

- Step 1: Find the LCD: 24.
- Step 2: Find equivalent fraction(s): From $\frac{1}{8}+\frac{5}{6}$ to $\frac{3}{24}+\frac{20}{24}$
- Step 3: Add numerators: $\frac{23}{24}$
- Step 4: Cannot reduce: $\frac{23}{24}$

$\frac{1}{7}+\frac{1}{4}$
$\frac{1}{7}+\frac{1}{4}=\frac{11}{28}$
(Type a whole number or a simplified fraction.)

Subtract and simplify.	$\frac{4}{5}-\frac{1}{4}=\frac{11}{20}$
$\frac{4}{5}-\frac{1}{4}$	(Type a whole number or a simplified fraction.)

Subtract the following fractions. Simplify the answer.
$\frac{5}{12}-\frac{2}{9}$
$\frac{5}{12}-\frac{2}{9}=\frac{7}{36}$
(Simplify your answer. Type a whole number or a fraction.)

- Step 1: Find the LCD: 36.
- Step 2: Find equivalent fraction(s): From $\frac{5}{12}-\frac{2}{9}$ to $\frac{15}{36}-\frac{8}{36}$
- Step 3: Subtract numerators: $\frac{7}{36}$
- Step 4: Cannot reduce: $\frac{7}{36}$
- Step 1: Find the LCD: 15.
- Step 2: Find equivalent fraction(s): From $\frac{4}{5}-\frac{7}{15}$ to $\frac{12}{15}-\frac{7}{15}$
- Step 3: Subtract numerators: $\frac{5}{15}$
- Step 4: Reduce: $\frac{1}{3}$

Subtract and simplify.	$\frac{7}{9}-\frac{1}{27}=\frac{20}{27}$ $\frac{7}{9}-\frac{1}{27}$

Subtract and simplify.	$\frac{3}{4}-\frac{5}{12}=\frac{1}{3}$ $\frac{3}{4}-\frac{5}{12}$ (Type a simplified fraction.)

MAT 050 Problems

Note

- The fractions are bigger in MAT 050, but the same 4-step process is used.

Add and simplify.	$\frac{2}{27}+\frac{1}{6}=\frac{13}{54}$ (Type a whole number or a simplified fraction.)

Add and simplify.	$\frac{1}{125}+\frac{3}{10}=\frac{77}{250}$ $\frac{1}{125}+\frac{3}{10}$
(Type a whole number or a simplified fraction.)	

Subtract and simplify.	$\frac{7}{15}-\frac{1}{9}=\frac{16}{45}$ $\frac{7}{15}-\frac{1}{9}$ (Type a whole number or a simplified fraction.)

Subtract and simplify.	$\frac{13}{15}-\frac{21}{25}=\frac{2}{75}$ $\frac{13}{15}-\frac{21}{25}$ (Type a whole number or a simplified fraction.)

