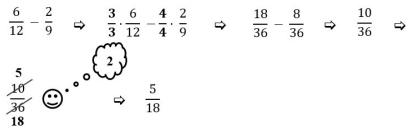
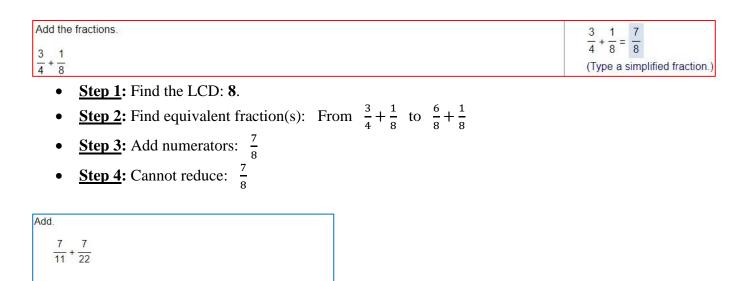
# **Lecture Notes**


#### <u>Notes</u>

- Fractions that have the *different denominators* are called **unlike fractions**, because the denominators are *unalike*.
- When adding and subtracting fractions with *different denominators*, we first need to transform one, or both, denominators so that they match.
  - We must find the **Lowest Common Denominator** (**LCD**). The LCD represents the lowest number possible that both denominators divide into.
  - To add or subtract fractions, we need the *same unit fraction*.
  - We must make the fraction(s) bigger so that the denominators match.
  - We are "bumping up" the fraction(s), changing their size, to make their denominators become the same number.
  - $\circ$  We multiply the denominator by some number that results in the LCD.
    - However, we must multiply **both** numerator and denominator by that *same number*.
    - Multiplying by that *same number* ensures we maintain the same *ratio* of the fraction.
    - A **ratio** shows the relative size of two values: **numerator** with respect to **denominator**.
- Adding and subtracting fractions with *different denominators* involves a 4-step process.
  - A fraction having unlike denominators is the typical problem you will get.
- If you understand how to *add* fractions, you will have no problem with how to *subtract* fractions.
  - The only difference between the two is the actual addition step, or subtraction step.
  - All other steps are the same for both types of problems.

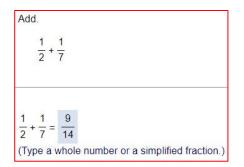
#### Add and Subtract Fractions with Unlike Denominators

- **<u>Step 1</u>**: Find the LCD.
- <u>Step 2</u>: Find equivalent fraction(s).
  - Multiply denominator(s) by some number that results in the LCD.
  - To maintain the same *ratio*, multiply the numerator by that same number (n) as the denominator.
    - Ex:  $\frac{n \cdot 2}{n \cdot 5}$
- <u>Step 3</u>: Add or subtract numerators. Keep denominators the same.
- <u>Step 4</u>: Reduce, if possible.
- <u>*Caution:*</u> You **cannot "reduce up front"** while in *addition or subtraction mode*. You must wait until the end to reduce.


Example:



- <u>Step 1</u>: Find the LCD: 36.
- <u>Step 2</u>: Find equivalent fraction(s): From  $\frac{6}{12} \frac{2}{9}$  to  $\frac{18}{36} \frac{8}{36}$
- <u>Step 3</u>: Subtract numerators:  $\frac{10}{36}$
- <u>Step 4</u>: Reduce:  $\frac{5}{18}$

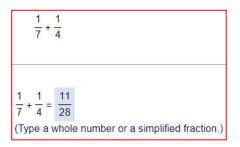

#### <u>Notes</u>

- In *Step 2* when we multiply the denominator(s) by some number that results in the LCD:
  - That *same* number is used up-and-down (numerator and denominator).
    - This is to maintain the same *ratio* of the fraction.
  - But a *different* number is used side-to-side (left fraction and right fraction).
    - This is because the denominators of the two fractions are themselves *different*.
    - If the denominators were the same, there would be no need for *Step 2* (or *Step 1*).



 $\frac{7}{11} + \frac{7}{22} = \frac{21}{22}$ 

(Simplify your answer. Type a whole number or a simplified fraction.)




Add and simplify.

 $\frac{1}{8} + \frac{5}{6}$ 

 $\frac{1}{8} + \frac{5}{6} = \frac{23}{24}$ (Type a simplified fraction.)

- <u>Step 1</u>: Find the LCD: 24.
- <u>Step 2</u>: Find equivalent fraction(s): From  $\frac{1}{8} + \frac{5}{6}$  to  $\frac{3}{24} + \frac{20}{24}$
- <u>Step 3</u>: Add numerators:  $\frac{23}{24}$
- <u>Step 4</u>: Cannot reduce:  $\frac{23}{24}$



| Subtract and simplify.        | 4 1 11                                          |
|-------------------------------|-------------------------------------------------|
| 4 1                           | $\frac{1}{5} - \frac{1}{4} = \frac{1}{20}$      |
| $\overline{5}$ $\overline{4}$ | (Type a whole number or a simplified fraction.) |

| Subtract the following fractions. Simplify the answer. |                                                  |  |
|--------------------------------------------------------|--------------------------------------------------|--|
| 5                                                      | 2                                                |  |
| 12                                                     | 9                                                |  |
|                                                        |                                                  |  |
|                                                        |                                                  |  |
| 5 2                                                    | 7                                                |  |
| $\frac{12}{12} - \frac{1}{9} =$                        |                                                  |  |
| (Simplify                                              | your answer. Type a whole number or a fraction.) |  |

- <u>Step 1</u>: Find the LCD: 36.
- <u>Step 2</u>: Find equivalent fraction(s): From  $\frac{5}{12} \frac{2}{9}$  to  $\frac{15}{36} \frac{8}{36}$
- <u>Step 3</u>: Subtract numerators:  $\frac{7}{36}$
- <u>Step 4</u>: Cannot reduce:  $\frac{7}{36}$

| Subtract and simplify.<br>$\frac{4}{5} - \frac{7}{15}$                                                                                                                                                                                                        | $\frac{4}{5} - \frac{7}{15} = \frac{1}{3}$ (Type a simplified fraction.)   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| • <u>Step 1</u> : Find the LCD: 15.<br>• <u>Step 2</u> : Find equivalent fraction(s): From $\frac{4}{5} - \frac{7}{15}$ to $\frac{12}{15} - \frac{7}{15}$<br>• <u>Step 3</u> : Subtract numerators: $\frac{5}{15}$<br>• <u>Step 4</u> : Reduce: $\frac{1}{3}$ |                                                                            |
| Subtract and simplify.<br>$\frac{7}{9} = \frac{1}{27}$                                                                                                                                                                                                        | $\frac{7}{9} - \frac{1}{27} = \frac{20}{27}$ (Type a simplified fraction.) |
| Subtract and simplify.<br>$\frac{3}{4} - \frac{5}{12}$                                                                                                                                                                                                        | $\frac{3}{4} - \frac{5}{12} = \frac{1}{3}$ (Type a simplified fraction.)   |

## MAT 050 Problems

### <u>Note</u>

• The fractions are bigger in MAT 050, but the same 4-step process is used.

| Add and simplify.             | 2 1 13                                          |
|-------------------------------|-------------------------------------------------|
| 2 1                           | $\frac{1}{27} + \frac{1}{6} = \frac{1}{54}$     |
| $\overline{27}^+\overline{6}$ | (Type a whole number or a simplified fraction.) |

| Add and simplify. | 1 3 77                                              |
|-------------------|-----------------------------------------------------|
| 1 3               | $\frac{125}{125} + \frac{10}{10} = \frac{250}{250}$ |
| 125 + 10          | (Type a whole number or a simplified fraction.)     |

| Subtract and simplify. | 7 1 16                                          |
|------------------------|-------------------------------------------------|
| 7 1                    | 15 9 45                                         |
| 15 - 9                 | (Type a whole number or a simplified fraction.) |

| Subtract and simplify. | 13 21 2                                         |
|------------------------|-------------------------------------------------|
| 13 21                  | 15 25 75                                        |
| 15 25                  | (Type a whole number or a simplified fraction.) |