Lecture Notes

Definitions

- A multiple is the *product* of two factors. Ex: $1 \cdot 7 = 7$, $2 \cdot 7 = 14$, $3 \cdot 7 = 21$, etc.
- The Least Common Multiple (LCM) is the smallest multiple that two factors divide into.
 - The LCM is the smallest multiple that is divisible by two factors.
 - The LCM is a *whole number*.
 - The LCM is not the smallest number that divides into two numbers a common mistake.
- The **Lowest Common Denominator** (**LCD**) has the same definition as the LCM, except the LCD refers to the *denominator* of a fraction.
 - Finding the LCD of two fractions allows us to add or subtract the fractions although they originally had two different denominators.

Two Methods for Finding the LCM (or LCD)

Method 1: One List of Multiples

- <u>Step 1</u>: Does the smaller number divide evenly (with 0 remainder) into the bigger number?
 - If it does, the *bigger number is the LCM* (or LCD).
- <u>Step 2</u>: Find the second multiple of the bigger number.
 - Does the smaller number divide evenly into the *second multiple* of the bigger number?
 - \circ If it does, the second multiple of the bigger number is the LCM.
- <u>Step 3</u>: Find the third multiple of the bigger number.
 - Does the smaller number divide evenly into the *third multiple* of the bigger number?
 - If it does, the third multiple of the bigger number is the LCM.
- <u>Notes</u>:
 - The LCM is either the *bigger* of the two given numbers, or *bigger*.
 - If the LCM has not been found after the third multiple of the bigger number, switch over to the *factor tree method* instead.

Example with One List of Multiples: Find the LCM of 6 and 8.

- <u>Step 1</u>: Does 6 divide into 8? No.
- <u>Step 2</u>: Find the second multiple of 8: $2 \cdot 8 = 16$
 - Does 6 divide into 16? No.
- <u>Step 3</u>: Find the third multiple of 8: $3 \cdot 8 = 24$
 - Does 6 divide into 24? Yes. The LCM is **24**.
- <u>Note</u>: The smallest number possible that *both* 6 and 8 divide into is **24**.

Method 2: Factor Tree

- <u>Step 1</u>: Find the prime factorization of the two numbers. See example below.
- <u>Step 2</u>: Compare the *number of occurrences* of each prime number between Tree A and Tree B.
- <u>Step 3</u>: The side with the most occurrences of the prime number being compared will become part of the LCM (or LCD).
 - The **most** occurrences of the number 2 are two. There are **more** 2's in Tree B so "bring down" those two 2's to start forming the LCM. So far we have: $LCM = 2 \cdot 2$
 - Leave the 2 in Tree A. Think of it as, "The winner comes down and the loser stays back."
- <u>Step 4</u>: Continue the process above by comparing the *number of occurrences* of each prime number between Tree A and Tree B.
 - After comparing all the prime numbers, we have $LCM = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 5 = 540$
 - Make sure to multiply the prime numbers from factored form to get the LCM: 540.
- <u>Notes</u>:
 - When comparing prime numbers between both sides and there is a **tie** in the number of occurrences, "bring down" the prime number(s) from **either side**, but **not from both sides**.
 - Draw a vertical "divider" line to separate the two different factor trees, as shown below.

Example with Factor Tree: Find the LCM of 54 and 60.

<u>Notes</u>

- I recommend that you **always start with the One List of Multiples** method regardless. If after trying a few multiples you did not find the LCM, switch over to the *factor tree method*.
 - The *One List of Multiples* method works best when it is easy to visually notice that the given numbers will match within the first few multiples.
- Conversely, start with the **Factor Tree** method if the two numbers are "awkward" (9 and 11) or big (25 and 35).
 - Using the *One List of Multiples* method for these types of numbers can become very timeconsuming and you might be working with difficult numbers.
- The process of finding the LCM and LCD is identical.
- When denominators of two fractions are different, it is because their *unit fractions* are different.
 - When we try to add (or subtract) fractions with different denominators, we can't.
 - Think of it as if the two fractions are speaking different languages.
 - Ex: One fraction speaks in "tenths" while the other speaks in "fifteenths".
 - \circ $\,$ We must find a common language for them to speak.
 - That common language is found when they have the same unit fraction.
 - \circ This means having the same number as their denominator: the LCD.

 Find the prime factorization of the numbers. Then find the LCM.

 50, 56

 The prime factorization of 50 is

 2 • 5 • 5

 The prime factorization of 56 is

 2 • 2 • 2 • 7

The LCM is 1400.

- The number 50 and 56 are big. Do not use the One List of Multiples method.
- The *Factor Tree* method is the obvious choice.

Find the LCM of this set of numbers. Do so mentally if possible.

7 and 21

- The numbers 7 and 21 are small numbers. Also, they are in the multiplication facts table.
- Definitely use the One List of Multiples method.
- Does 7 divide into 21?
 - Yes. The bigger number is the LCM.
 - Thus, LCM = 21.

Find the least common multiple of the set of numbers.

2,5

The least common multiple of 2 and 5 is 10.

- When the two given numbers are **different** prime numbers, simply *multiply* the two numbers to get the LCM: $2 \cdot 5 = 10$
- Knowing this "shortcut technique" can save you time.
- You can always use the One List of Multiples or the Factor Tree method to find the LCM.

Find the LCM of this set of numbers. Do so mentally if possible.	The LCM is 6.
3 and 6	

- Always start with the One List of Multiples method.
- Does 3 divide into 6?
 - Yes. The bigger number is the LCM.
 - Thus, LCM = 6.

The LCM is 21

Find the least common multiple of the set of numbers. 4,7 The least common multiple of 4 and 7 is 28.

- The prime factorization of 4 is **2** · **2**
- The prime factorization of 7 is just **7** itself.
- Since we have **different** prime factors **between** the two given numbers, we'll use the "shortcut technique" discussed above.
 - Knowing this "shortcut technique" can save you time.
- Multiply the two numbers to get the LCM: $4 \cdot 7 = 28$

Use multiples of the larger number to find the least common multiple in the set of numbers.

6 and 34

LCM = 102 (Type a whole number.)

- Always start with the One List of Multiples method.
- Does 6 divide into 34? No.
- Find the second multiple of 34: $2 \cdot 34 = 68$
- Does 6 divide into 68? No.
- Find the **third multiple** of 34: $3 \cdot 34 = 102$
- Does 6 divide into 102? Yes. The LCM is **102**.
- In this problem, multiples of 34 were quickly getting big. If after the third multiple we still had not found the LCM, we would have switched over to the *Factor Tree* method.

Use multiples of the larger number to find the LCM of this set of numbers.	The LCM of 15 and 25 is 75 .
15 and 25	

- Although we would have found the LCM on the third multiple of 25, constantly dividing by 15 is not easy to do, right?
- For this problem, it would be better to start with the *Factor Tree* method.

Find the LCM of this set of numbers. Do so mentally if possible.	The LCM of 6 and 30 is 30 .
6 and 30	

• Which method would you use, the One List of Multiples or the Factor Tree, and why?

Find the LCD for the following pair of fractions. $\frac{1}{8}$ and $\frac{4}{7}$ The least common denominator is 56.

- The process of finding the LCM and LCD is identical.
 - \circ We are finding the LCM of the two denominators: 8 and 7.
 - In this problem, it is called LCD because we are dealing with denominators of fractions.
- To find the LCD, which of the two methods will you use?
 - One List of Multiples method?
 - *Factor Tree* method?
 - Is it possible to use the "shortcut technique" for this problem?
- Which of the three procedures would be the most time-consuming for the given denominators?
 - One List of Multiples method?
 - Factor Tree method?
 - The "shortcut technique"?

Write the fractions as equivalent fractions	fractions as equivalent fractions with the LCD.			
$\frac{9}{10}$ and $\frac{5}{8}$				
The equivalent fractions with the LCD are	$\frac{36}{40}, \frac{25}{40}$			
(Use a comma to separate answers.)				

- For this problem, we will use the same procedure as in the previous one.
- However, we are asked to find **equivalent fractions** based on the LCD.
- Which method will we use to find the LCD between 10 and 8, and why?
- Is it possible to use the "shortcut technique" here?
- First we find the LCD, and it is $2 \cdot 2 \cdot 2 \cdot 5 = 40$.
- Then, we will a procedure similar to the one from the *Equivalent Fractions* section. Do you remember this type of problem below? We will find equivalent fractions in a similar way.

Find the mi	ssing numera	ator so that	the fractions wi	ill be equal
5 ?				
$\overline{7} = \overline{42}$				
5 30				
7 42				

- Start by placing a multiplication dot '•' in front of the *left* denominator: $\frac{9}{10}$
- Ask yourself, "What number times 10 equals the LCD, 40?"
 - That factor is **4**.
 - Therefore, multiply *both* the numerator *and* denominator of left fraction by 4: $\frac{4 \cdot 9}{4 \cdot 10}$
 - The equivalent left fraction becomes $\frac{36}{40}$
- Then place a multiplication dot '•' in front of the *right* denominator: $\frac{5}{8}$
- Ask yourself, "What number times 8 equals the LCD, 40?"
 - That factor is 5.
 - Therefore, multiply *both* the numerator *and* denominator of left fraction by 5: $\frac{5 \cdot 5}{5 \cdot 8}$
 - The equivalent left fraction becomes $\frac{25}{40}$
- The answer, with a comma between the two fractons, is: $\frac{36}{40}$, $\frac{25}{40}$
- <u>Notes</u>:
 - After placing the multiplication dot '•' in front of a denominator and asking yourself,
 "What number times the denominator equals the LCD," you can use the *factored form* of the prime factorization to help you: 2 2 2 5
 - As mentioned previously, always read the additional instructions in blue to see the format of the answer that is expected. In this problem, a comma is needed to separate the fractions.