Lecture Notes

The Unit Fraction and Equal Fractional Parts

Fractions as a Partition of an Object Divided into Equal Parts

Consider a candy bar divided into 5 equal sections. If you eat 2 sections, you have eaten $\frac{2}{5}$ of the candy bar. The denominator 5 tells us the unit, $\frac{1}{5}$. The numerator 2 tells us the number of equal parts we are considering, 2 .

EXAMPLE 2 What part is shaded?

There are 8 equal parts. This tells us the unit, $\frac{1}{8}$. The denominator is 8 . We have 5 of the units shaded. This tells us the numerator, 5 . Thus,
$\underline{5} \leftarrow 5$ units are shaded.
$8 \leftarrow$ The unit is $\frac{1}{8}$.
is shaded.

a ADDITION USING FRACTION NOTATION

Like Denominators

Addition using fraction notation corresponds to combining or putting like things together, just as addition with whole numbers does. For example,

We see that to add when denominators are the same, we add the numerators and keep the denominator.

A fraction is a number divided into equal parts.

The numerator represents the individual equal parts of a fraction.

The denominator represents the total equal parts of a fraction.

The unit fraction is a fraction where the:

- Numerator is 1 .
- Denominator is a whole number.

A unit fraction represents exactly 1 part (numerator) of all the equal parts of the whole (denominator).

Thus, a fraction represents the part over the whole: $\frac{\text { Part }}{\text { Whole }}$

We combine (add or subtract) fractions only if they have the same unit fraction.

This means that both fractions must have the same denominator.

Fractions with the same denominator are called like denominators (like fractions).

To add, simply add the two numerators (individual equal parts) of the fractions to obtain a sum of the individual equal parts.

The denominator does not change since it represents the total equal parts of the two.

Notes

- Fractions that have the same denominators are called like fractions, because the denominators are alike.
- Adding and subtracting fractions with the same denominator is relatively easy.
- Having the same denominators rarely happens.
- Usually, the denominators are different.
- We will examine different denominators later in the course.
- If you understand how to add fractions, you will have no problem with how to subtract fractions.
- The only difference between the two is the actual addition step, or subtraction step.
- All other steps are the same for both types of problems.

Add and Subtract Fractions with Like Denominators

- Step 1: Add or subtract numerators.
- Step 2: Keep denominators the same.
- Step 3: Reduce, if possible.
- Caution: You cannot "reduce up front" while in addition or subtraction mode. You must wait until the end to reduce.

Example:

- Add numerators.
- Keep denominators the same.
- Reduce.

Add.
$\frac{1}{5}+\frac{1}{5}$
$\frac{1}{5}+\frac{1}{5}=\frac{2}{5}$ (Simplify your answer. Type a whole number or a simplified fraction.)

- After adding numerators, we get: $\frac{2}{5}$
- Keep denominators the same.
- The last step is to reduce. However, the fraction does not reduce.

Add and simplify. $\frac{1}{12}+\frac{1}{12}$	$\frac{1}{12}+\frac{1}{12}=\frac{1}{6}$ (Simplify your answer. Type a whole number, fraction, or mixed number.)

- After adding numerators, we get: $\frac{2}{12}$
- The last step is to reduce: $\frac{1}{6}$

Add and simplify.	$\frac{7}{10}$
$\frac{7}{10}$	$\frac{1}{10}$
$+\frac{1}{10}$	$\frac{4}{5}$
	(Simplify your answer. Type a whole number, fraction, or mixed number.)

- Adding and subtracting fractions in a vertical format involves the same steps as in the horizontal format.
- For addition, changing the order of the fractions does not affect the answer because of the Commutative Property of Addition.
- However, for subtraction the order of the fractions cannot be changed. There is no Commutative Property of Subtraction.

$$
\begin{aligned}
& \text { Add and simplify. } \\
& \frac{14}{22}+\frac{3}{22}+\frac{2}{22}
\end{aligned}
$$

$\frac{14}{22}+\frac{3}{22}+\frac{2}{22}=\frac{19}{22}$
(Type a simplified fraction.)

- When adding three fractions, we use the same procedure as when adding two fractions.
- After adding the three numerators, we get: $\frac{19}{22}$
- Keep denominators the same.
- The last step is to reduce. However, the fraction does not reduce.

Add. Simplify the result if possible.
$\frac{2}{5}+\frac{3}{5}$
$\frac{2}{5}+\frac{3}{5}=1$ (Type a whole number or a fraction.)

- After adding numerators, we get: $\frac{5}{5}$
- The last step is to reduce: $\frac{5}{5}=\mathbf{1}$

Subtract and simplify.	$\frac{8}{15}-\frac{1}{15}=\frac{7}{15}$ (Type a whole number or a simplified fraction.) $\frac{8}{15}-\frac{1}{15}$

- Subtracting two fractions involves the same steps as when adding two fractions, except that now we are subtracting the numerators.
- After subtracting numerators, we get: $\frac{7}{15}$
- The last step is to reduce. However, the fraction does not reduce.

Subtract and simplify.	$\frac{31}{22}$
$\frac{31}{22}$	$\frac{-\frac{21}{22}}{\frac{21}{22}}$
	(Simplify your answer. Type a whole number, fraction, or mixed number.)

- Subtracting fractions in a vertical format involves the same steps as in the horizontal format.
- But we must keep in mind that for subtraction, the order of the fractions cannot be changed.
- After subtracting numerators, we get: $\frac{10}{22}$
- The last step is to reduce: $\frac{5}{11}$

