Lecture Notes

<u>Notes</u>

- To multiply fractions, the rule states to multiply straight across.
 - Multiply numerators.
 - Multiply denominators.
 - Then reduce, if possible.
- However, it is better to reduce first, then multiply.
 - Reducing first means that you will work with smaller numbers.
 - Multiplying second means that you will work with smaller numbers.
 - And working with smaller numbers means that:
 - Your chance of making mistakes decrease.
 - Multiplying is easier.
 - I call this technique "reducing up front."

Cross Reducing

- When multiplying two fractions, it is possible to reduce *diagonally*, called **cross reducing**.
 - <u>Case 1</u>: numerator of left fraction reduces with denominator of right fraction.
 - <u>Case 2</u>: numerator of right fraction reduces with denominator of left fraction.
- *Caution:* Do not cross multiply. That concept is used for proportions, and we do not cover proportions in this course.

"Reducing Up Front" (Reducing Before Multiplying)

- <u>Step 1</u>: Left Fraction. See if the numerator reduces with denominator.
- <u>Step 2</u>: Right Fraction. See if the numerator reduces with denominator.
- <u>Step 3</u>: Left Numerator and Right Denominator. See if the numerator of left fraction reduces with denominator of right fraction.
- <u>Step 4</u>: Right Numerator and Left Denominator. See if the numerator of right fraction reduces with denominator of left fraction.
- <u>Step 5</u>: <u>Multiply Across</u>. Multiply any reduced numerators. Multiply any reduced denominators.
- If you reduced the fractions "up front" to their lowest terms, the product after multiplying is guaranteed to be fully reduced.
- <u>Notes</u>:
 - Use reducing techniques you know: slash old numbers and replace them with new ones.
 - You can only reduce **up-down and diagonally**. You cannot reduce going across.
 - If there is a '1' in the numerator or denominator, the '1' *cannot* further reduce.
 - \circ $\,$ If the answer is an improper fraction, do not change it to a mixed number.

<u>"Reduce Up Front" Example:</u>

• <u>Note</u>: After reducing (slashing old numbers and replacing them with new ones), it is a good idea to then slash out the "thought bubble" too. The reason is to avoid accidentally multiplying across with the "thought bubble" instead of multiplying only the two numerators.

Multiply.	The answer is	9
3 3		20
4 5		

- It is not possible to "reduce up front."
- We can then multiply across.
- The product is guaranteed to be fully reduced.

Multiply.	Wr	ite answers in lowest terms.
1	4	
4	5	
1 4	1	
$\frac{1}{4} \cdot \frac{1}{5} =$	5	(Simplify your answer.)

- If the product has a '1' in the numerator, it must stay there as part of the answer.
- Ex: $\frac{1}{5}$ is a very different number from $\frac{5}{1} = 5$

Multiply. Write answers in lowest terms and as whole or mixed numbers where possible $7\cdot\frac{2}{7}$
$7 \cdot \frac{2}{7} = 2$ (Type a whole number, proper fraction, or mixed number.)

- <u>Caution</u>:
 - This is not a mixed number, a common mistake.
 - If it was, there would be no multiplication dot '•' between the whole number and fraction.
 - It would then look like this: $7\frac{2}{7}$
 - However, it *does have* a multiplication dot '•' between the whole number and fraction so therefore this is a multiplication problem.
- When multiplying a whole number and a fraction, write a '1' under the whole number to make it into a fraction.
 - Putting a '1' under any number does not change its value.
- "Reduce up front." The two 7s reduce (cancel) diagonally into '1'. Each 7 becomes a '1'.
- Now mutliply across.
- Do not leave your answer with a '1' in the denominator because the answer is not fully reduced. A fraction means division so divide the numerator (2) by the denominator (1) to get a result of 2.
- Ex: $7 \cdot \frac{2}{7} = \frac{7}{1} \cdot \frac{2}{7} = \frac{2}{1} = 2$

Find the product and write in lowest terms.	6 2 4
6 2	$\overline{11} \cdot \overline{3} = \overline{11}$
<u>11 3</u>	(Simplify your answer. Type an integer or a fraction.)

- When multiplying fractions, you can set them up in either of the following two ways:
 - Keep the fractions separated by a multiplication dot '•' between them.
 - Combine the numerators and denominators of the two fractions so that they become one fraction.
 - The two numerators will be separated by a multiplication dot '•' between them.
 - The two denominators will be separated by a multiplication dot '•' between them.
 - Ex: $\frac{6 \cdot 2}{11 \cdot 3}$
- It is not necessary to combine the two separate fractions into one fraction.
 - You can keep the fractions separate with a multiplication dot '•' between them.
 - However, you should be aware of the format where fractions are combined in case you see that setup in future problems.

Mul	tiply.		
	4	3	
	9	5	
4.	3 =	4	(Simplify your answer)
9	5	15	(ompiny your unswei.)

- The **3** and **9** reduce diagonally into **1** and **3** respectivelly, because '3' divides into both numbers.
- Then multiply across.

Multiply and simplify.	The product is $\frac{27}{14}$.
$\frac{12}{7} \cdot \frac{9}{8}$	(Type an integer or a simplified fraction.)

- The 12 and 8 reduce diagonally into 3 and 2 respectively, because '4' divides into both numbers.
- Then multiply across.

Find the product and write it in lowest terms.	6 5 15
$\frac{6}{11} \cdot \frac{5}{4}$	$\overline{11} \cdot \overline{4} = \overline{22}$ (Simplify your answer. Type an integer or a fraction.)

- The 6 and 4 reduce diagonally into 3 and 2 respectivelly, because '2' divides into both numbers.
- Then multiply across.

Find the product and write it in lowest terms.	10	3_	5
10 3	39	8	52
39 8			

- The 10 and 8 reduce diagonally into 5 and 4 respectively, because '2' divides into both numbers.
- The **3** and **39** reduce diagonally into **1** and **13** respectively, because '3' divides into both numbers.
- Then multiply across.

Multiply. Write the product in lowest terms.	The product is $\frac{21}{2}$
$\left(\frac{9}{5}\right)\left(\frac{7}{6}\right)$	(Type an integer or a simplified fraction.)

• Although parentheses are used to indicate multiplication, follow the same procedure as above.