Lecture Notes

Notes

- Equivalent fractions represent the same value, although they look different.
- The four fractions below have the same shaded area, one-half of the circle. The difference is that the "slices" have different sizes.

- Sometimes we must multiply or divide the numerator or the denominator of a fraction.
- When we do, we must multiply or divide the same number in the numerator and the denominator.
- Using the same number allows us to maintain the same ratio of the fraction.
- A ratio shows the relative size of two values: numerator with respect to denominator.

Reference

- Equivalent Fractions, by The Learning Portal.
Write each fraction in lowest terms. Then state whether the fractions are equivalent or not equivalent.
$\frac{12}{15}$ and $\frac{16}{20}$
$\frac{12}{15}=\frac{4}{5}$
$\frac{16}{20}=\frac{4}{5}$
Are $\frac{12}{15}$ and $\frac{16}{20}$ equivalent or not equivalent?
The two fractions are not equivalent.
The two fractions are equivalent.
- To determine if two fractions are equivalent, start by reducing both fractions to their lowest terms.
- Use either method: Reduce by Dividing or Reduce by Prime Factorization.
- Compare the value of the two fractions.
- If the value is the same, the fractions are equivalent.
- If the value is not the same, the fractions are not equivalent.
- Here, both fractions reduce to $\frac{4}{5}$ so they are equivalent.

Write each fraction in lowest terms. Then state whether the fractions are equivalent or not equivalent.
$\frac{4}{8}$ and $\frac{2}{6}$
$\frac{4}{8}=\frac{1}{2}$
$\frac{2}{6}=\frac{1}{3}$
Are $\frac{4}{8}$ and $\frac{2}{6}$ equivalent or not equivalent?
The two fractions are equivalent.
The two fractions are not equivalent.

Write each fraction in lowest terms. Then state whether the fractions are equivalent or not equivalent.

$$
\frac{21}{3} \text { and } \frac{77}{7}
$$

$\frac{21}{3}=7$ (Type a whole number or a simplified fraction.)
$\frac{77}{7}=11$ (Type a whole number or a simplified fraction.)
Decide whether the fractions $\frac{21}{3}$ and $\frac{77}{7}$ are equivalent or not equivalent.

The fractions are equivalent
© The fractions are not equivalent.

- Sometimes the denominator divides evenly into the numerator.
- If that happens, the reduced number will be a whole number.
Decide whether the fractions $\frac{6}{18}$ and $\frac{9}{27}$ are equivalent or not equivalent.
Are $\frac{6}{18}$ and $\frac{9}{27}$ equivalent or not equivalent?
The two fractions are not equivalent.
The two fractions are equivalent.

Decide whether the fractions $\frac{2}{6}$ and $\frac{3}{8}$ are equivalent or not equivalent.

Are $\frac{2}{6}$ and $\frac{3}{8}$ equivalent or not equivalent?
The two fractions are equivalent.
The two fractions are not equivalent.

Write the fraction as an equivalent fraction with the given denominator.
$\frac{5}{2}=\frac{-}{4}$
$\frac{5}{2}=\frac{10}{4}$

- We have to find the missing number for the blank numerator on the right fraction.
- Start by placing a multiplication dot ' \circ ' in front of the left denominator: . $\frac{5}{2}$
- Then look at both denominators and ask yourself, "What number times the 2 (left denominator) equals the 4 (right denominator)?"
- That factor is $\mathbf{2}$.
- Therefore, multiply both the numerator and denominator of left fraction by 2: $\begin{aligned} & 2 \cdot \frac{5}{2} \\ & 2 \cdot 2\end{aligned}$
- Multiplying the numerator of left fraction (5) by 2 results in 10.
- Thus, replace the blank numerator of right fraction with $10: \frac{10}{4}$
- Notes:
- We multiplied by $\frac{2}{2}$ which is the same as 1 .
- Whichever number you multiply the numerator by must be the same number you use to multiply the denominator, and vice versa.
- You have to multiply by a ' 1 ' to maintain the ratio of the fraction.
- Not multiplying by ' 1 ' changes the overall value of the fracton to some other number.
- Here, we are "building up" the fraction to make it bigger, the opposite of reducing.
- This skill will be helpful when we add and subtract fractions with different denominators.

Rewrite the rational expression with the given denominator.
$\frac{8}{7}=\frac{?}{28}$
$\frac{8}{7}=\frac{32}{28}$

Write the fraction as an equivalent fraction with the indicated denominator.
$\frac{1}{8}=\frac{?}{64}$
$\frac{1}{8}=\frac{8}{64}$

Find the missing numerator so that the fractions will be equal.
$\frac{5}{7}=\frac{?}{42}$
$\frac{5}{7}=\frac{30}{42}$

