Lecture Notes

Notes

- Divisibility refers to one number dividing evenly into another number, with 0 remainder.
- Divisible: $12 \div 4=3, R 0$
- Not divisible: $11 \div 5=2, R 1$
- We use the divisibility rules to quickly determine the divisibility of number, without using long division.
- It would not be wrong to use long division for divisibility, but it will take longer to do.
- The main benefit from using divisibility rules is the quickness of the method.
- Divisibility rules exist for the numbers $4,6,7,8 \ldots$, but we will not cover them in this course nor in MAT 050.

DIVISIBILITY RULES

Divisible By?	Rule for Divisibility	Examples
$\mathbf{2}$	A number is divisible by $\mathbf{2}$ if its ones digit is even $(0,2,4,6,8)$.	$10,86,102,384$
$\mathbf{3}$	A number is divisible by $\mathbf{3}$ if the sum of its digits is divisible by 3.	$18,36,123,609$
$\mathbf{5}$	A number is divisible by $\mathbf{5}$ if its ones digit is 0 or 5.	$20,65,130,785$
$\mathbf{9}$	A number is divisible by $\mathbf{9}$ if the sum of its digits is divisible by 9.	$27,63,162,819$
$\mathbf{1 0}$	A number is divisible by $\mathbf{1 0}$ if its ones digit is 0.	$30,90,170,540$

