Lecture Notes

<u>Notes</u>

- **Divisibility** refers to one number dividing evenly into another number, with 0 remainder.
 - **Divisible**: $12 \div 4 = 3$, **R0**
 - **Not divisible**: $11 \div 5 = 2, R\mathbf{1}$
- We use the divisibility rules to quickly determine the divisibility of number, *without using long division*.
 - \circ It would not be wrong to use long division for divisibility, but it will take longer to do.
 - The main benefit from using divisibility rules is the *quickness* of the method.
- Divisibility rules exist for the numbers 4, 6, 7, 8..., but we will not cover them in this course nor in MAT 050.

DIVISIBILITY RULES

Divisible By?	Rule for Divisibility	Examples
2	A number is divisible by 2 if its ones digit is even $(0, 2, 4, 6, 8)$.	10, 86, 102, 384
3	A number is divisible by 3 if the sum of its digits is divisible by 3.	18, 36, 123, 609
5	A number is divisible by 5 if its ones digit is 0 or 5.	20, 65, 130, 785
9	A number is divisible by 9 if the sum of its digits is divisible by 9.	27, 63, 162, 819
10	A number is divisible by 10 if its ones digit is 0.	30, 90, 170, 540