Lecture Notes

Notes

- If you do not know the Divisibility Rules yet, you will find this section to be difficult.
- Always read the instructions written in blue (below answer box) to see the format of the answer.
- Use a comma to separate the factors.
- If a factor is repeated, list it only once.
- When finding all the factors of a number, there is no easy way to do it. But there is a systematic way to do it using a list.
- Start with the $1 \times$ given number.
- Then you try $2 \times$ some number to see if the answer equals the given number.
- Work up sequentially using divisibility rules, using prime or composite numbers.
- Thinking coins helps mainly for big numbers like 250. Think $\$ 2.50$. Ten quarters gives $\$ 2.50 \ldots$

Find all the factors of 46.	The factors of 46 are $1,2,23,46$. (Use a comma to separate answers as needed. Type each factor only once.)

- Notice that they want all the factors.
- Start with 1•46 and work your way up... 2•23.

Find all the factors of 54.	The factors are $1,2,3,6,9,18,27,54$. (Use a comma to separate answers as needed. Type each factor only once.

- Using divisibility rules will help you on these types of problems.
- Start with $1 \cdot 54$ and work your way up... 2•27, etc.

Find all the factors of 100.	The factors are $1,2,4,5,10,20,25,50,100$. (Use a comma to separate answers as needed. Type each factor only once.

- Notice that $10 \cdot 10=100$, but the factor 10 is written only once.

Find all the factors of 147.	The factors are 1,3,7,21,49,147. (Use a comma to separate answers as needed. Type each factor only once.)

- Although a divisibility rule exists for the number 7, it is not easy to use. Use long division instead.

Find all the factors of 49.	The factors are 1,7,49. (Use a comma to separate answers as needed. Type each factor only once.)

- Notice that $7 \cdot 7=49$, but the factor 7 is written only once.

