Lecture Notes

Prerequisite: Your Multiplication Facts Must Be Mastered

- We will work with multi-digit multiplication.
- I will not review single-digit multiplication.
- By now, you should have already mastered recalling the multiplication facts.
- The ideal accuracy is $\mathbf{1 0 0 \%}$ correct recall.
- The ideal speed is a 2 second recall, maximum.
- If you have not yet mastered the multiplication facts, multi-digit multiplication will be extremely difficult, if not impossible, for you to complete.
- In fact, it will likely be impossible.
- Review the Multiplication Facts Workbook if necessary.

Chain Multiplication

- This type of multiplication is called chain multiplication because each factor acts as a link on a chain. Here we have three factors. You can multiply in any order that you like because of the Commutative Property of Multiplication.
- Zero times any number is zero, even if there are other numbers being multiplied.
- Therefore, the product is 0 .

- Multiply the first two numbers (8×7). Then multiply that answer with the other number (8).

Multiplying with Ending Zeros

Notes

- We will do multi-digit multiplication when one, or two, of the two factors end with zeros.
- Make sure to keep each column vertically aligned as you work out the problem on paper.
- Use plenty of space between each digit to avoid crowding the digits. It will also make it easier to vertically align your digits.
- Using commas are optional. However, if you do use them, they must be placed correctly, or the answer will be considered incorrect.

- We can multiply by using the longer method, or the quicker method.
- I recommend using the quicker way to multiply when one, or two, of the factors end with zeros.
- Caution: if a zero is not to the right of the number but instead is somewhere within the number, we cannot use the quick way to multiply.
- Ex: $6,005 \times 12$. Here, we can only use the longer method to multiply.

```
Multiply.
    4 1 8 8
    + 20
```

Multiply.
22000
$\times 4000$
Find the product.
145
$\times 100$

Find the product.
600
$\times 200$

Multiplying with No Ending Zeros

Notes

- We will do multi-digit multiplication where neither of the two factors end with zeros.
- Make sure you have enough space on your paper, to the left of the problem, because multi-digit multiplication problems are written from right to left.
- You want to avoid running out space on your paper when doing these problems.

- Because each column can hold only one digit, we must carry the left-hand digit at the top of the next column to the left.

- We do not need to put the bigger number on top. We can multiply the problem as is.
- If we left the 99 on the bottom, how can this be beneficial?
- It can act as a check because we are multiplying by 9 two times. Therefore, both rows will have the same number.
- After you finish multiplying all digits of the top number by the ones digit of the bottom number, put a slash through the carries at the top of the columns.
- This is to avoid being confused by the carries from the ones digit with the new carries that will be placed there when multiplying by the tens digit of the bottom number.
- Notice the pattern of multiplying the digits.
- We take turns multiplying by each digit of the bottom number.
- Start by multiplying with the ones digit of the bottom number.
- Each digit of the top number is multiplied from right to left.
- Then multiply with the tens digit of the bottom number.
- Each digit of the top number is multiplied from right to left.
- Etc.
- Change horizontal format to vertical format.
- Due to the Commutative Property of Multiplication, it does not matter which number goes on top.

- Notice what happens when we multiply with 0 and there is a carry on top.

```
Multiply.
(844)(73)
```

- I recommend that you place the number with the most digits at the top.
- Having the number with fewer digits on the bottom means that there will be fewer rows when working out the problem.
- Writing fewer rows means that the computations will be less confusing.

Multiply.
587
$\times 253$

- This is the hardest type of multi-digit multiplication problem that we will do in this course.
- Each number is 3 digits long and there are no ending zeros.
- Therefore, we must use the longer way to multiply.

