MAT 128, Section 1.4, Number 82, Page 127

Intermediate Algebra, $11^{\text {th }}$ Edition, Marvin L. Bittinger, 2011, Pearson Education

Problem:

Lillian is about to invest $\$ 20,000$, part at 3% [interest rate] and the rest at 4% [interest rate]. What is the most she can invest at 3% and still be guaranteed at least $\$ 650$ in interest per year?

Solution:

Let:
$x=$ Amount of money invested at 3% interest rate
$y=$ Amount of money invested at 4\% interest rate

Write Equation 1 based on wording of problem:

$$
x+y=20,000 \quad \Rightarrow \text { Amount of money invested at } 3 \% \text { and } 4 \% \text { interest rate }=\$ 20,000
$$

Rewrite Equation 1 into Equation 2 to isolate y :

$$
y=20,000-x \quad \Rightarrow \text { Amount of money invested at } 4 \% \text { interest rate }
$$

WHY THIS IS DONE

The problem wants to know what is the most amount of money Lillian can invest at 3% interest rate... Since we let $x=3 \%$, the variable we want to solve for eventually is x (in Equation 4). We need to set up Equation 4 so that it is in "terms of x ". To do so, we must isolate y in Equation 2 so that all terms, including x, can then be substituted into the y variable of Equation 4.

Write Equation 3:

$$
\begin{aligned}
.03 x+.04 y=650 \quad & \mathbf{1}^{\text {st }} \text { term .03x: the } 3 \% \text { interest portion of the } \$ 20,000 \\
\Rightarrow & \mathbf{2}^{\text {nd }} \text { term .04y: the } 4 \% \text { interest portion of the } \$ 20,000 \\
\Rightarrow & \mathbf{3}^{\text {rd }} \text { term 650: sum of } 3 \% \text { and } 4 \% \text { interest of the } \$ 20,000 \\
& \text { to guarantee at least } \$ 650 \text { in total interest }
\end{aligned}
$$

Write Equation 4:

$.03 x+.04(20,000-x)=650 \quad \Rightarrow$ Substitute $20,000-x$ for y from Equation 2 to get
Equation 4 in "terms of x " with no y variable left over

Simplify Equation 4:

$$
\begin{aligned}
.03 x+800-.04 x & =650 \\
-.01 x & =-150 \\
x & =15,000
\end{aligned}
$$

WHY THIS IS DONE

The goal is to solve for one variable, in this case x. Substitute the y expression $20,000-x$ from Equation 2 into the y variable of Equation 4. Now there is only one variable to solve, x, which is the variable that represents the 3% interest portion of the $\$ 20,000$.

Final Answer:

Lillian can invest at most $\$ 15,000$ at 3% interest rate to be guaranteed at least $\$ 650$ in interest per year.

