Theorem 12.2 Properties of the Derivative

Let \mathbf{r} and \mathbf{u} be differentiable vector-valued functions of t, let w be a differentiable realvalued function of t, and let c be a scalar.

1. $\frac{d}{d t}[c \mathbf{r}(t)]=c \mathbf{r}^{\prime}(t)$
2. $\frac{d}{d t}[\mathbf{r}(t) \pm \mathbf{u}(t)]=\mathbf{r}^{\prime}(t) \pm \mathbf{u}^{\prime}(t)$
3. $\frac{d}{d t}[w(t) \mathbf{r}(t)]=w(t) \mathbf{r}^{\prime}(t)+w^{\prime}(t) \mathbf{r}(t)-$ Product Rule
4. $\frac{d}{d t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]=\mathbf{r}(t) \cdot \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \cdot \mathbf{u}(t)-\quad$ Same as Product Rule but using Dot Product
5. $\frac{d}{d t}[\mathbf{r}(t) \times \mathbf{u}(t)]=\mathbf{r}(t) \times \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \times \mathbf{u}(t)-\quad$ Order of the Cross-Product matters

Remark

Note that Property 5 applies only to three-dimensional vector-valued functions because the cross product is not defined for two-dimensional vectors.
6. $\frac{d}{d t}[\mathbf{r}(w(t))]=\mathbf{r}^{\prime}(w(t)) w^{\prime}(t)-$ Composite function, use Chain Rule
7. If $\mathbf{r}(t) \cdot \mathbf{r}(t)=c$, then $\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0$.

Example 4 Using Properties of the Derivative

For $\mathbf{r}(t)=\frac{1}{t} \mathbf{i}-\mathbf{j}+\ln t \mathbf{k}$ and $\mathbf{u}(t)=t^{2} \mathbf{i}-2 t \mathbf{j}+\mathbf{k}$, find each derivative.
a. $\frac{d}{d t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]$
b. $\frac{d}{d t}\left[\mathbf{u}(t) \times \mathbf{u}^{\prime}(t)\right]$

Solution

a. Because $\mathbf{r}^{\prime}(t)=-\frac{1}{t^{2}} \mathbf{i}+\frac{1}{t} \mathbf{k}$ and $\mathbf{u}^{\prime}(t)=2 t \mathbf{i}-2 \mathbf{j}$, you have

$$
\begin{aligned}
\frac{d}{d t}[\mathbf{r}(t) \cdot \mathbf{u}(t)] & =\mathbf{r}(t) \cdot \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \cdot \mathbf{u}(t) \\
& =\left(\frac{1}{t} \mathbf{i}-\mathbf{j}+\ln t \mathbf{k}\right) \cdot(2 t \mathbf{i}-2 \mathbf{j})+\left(-\frac{1}{t^{2}} \mathbf{i}+\frac{1}{t} \mathbf{k}\right) \cdot\left(t^{2} \mathbf{i}-2 t \mathbf{j}+\mathbf{k}\right) \\
& =2+2+(-1)+\frac{1}{t} \\
& =3+\frac{1}{t}
\end{aligned}
$$

b. Because $\mathbf{u}^{\prime}(t)=2 t \mathbf{i}-\mathbf{j}$ and $\mathbf{u}^{\prime \prime}(t)=2 \mathbf{i}$, you have

$$
\begin{aligned}
\frac{d}{d t}\left[\mathbf{u}(t) \times \mathbf{u}^{\prime}(t)\right] & =\left[\mathbf{u}(t) \times \mathbf{u}^{\prime \prime}(t)\right]+\left[\mathbf{u}^{\prime}(t) \times \mathbf{u}^{\prime}(t)\right] \\
& =\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
t^{2} & -2 t & 1 \\
2 & 0 & 0
\end{array}\right|+\mathbf{0} \\
& =\left|\begin{array}{rr}
-2 t & 1 \\
0 & 0
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
t^{2} & 1 \\
2 & 0
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
t^{2} & -2 t \\
2 & 0
\end{array}\right| \mathbf{k} \\
& =0 \mathbf{i}-(-2) \mathbf{j}+4 t \mathbf{k} \\
& =2 \mathbf{j}+4 t \mathbf{k} .
\end{aligned}
$$

Definitions of Velocity and Acceleration

If x and y are twice-differentiable functions of t, and r is a vector-valued function given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$, then the velocity vector, acceleration vector, and speed at time t are as follows.

Two
Dimensions

$$
\begin{aligned}
& \text { Velocity }=\mathbf{v}(t) \quad=\mathbf{r}^{\prime}(t) \quad=x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j} \\
& \text { Acceleration }=\mathrm{a}(t) \quad=\mathrm{r}^{\prime \prime}(t) \quad=x^{\prime \prime}(t) \mathbf{i}+y^{\prime \prime}(t) \mathbf{j} \\
& \text { Speed }=\|\mathbf{v}(t)\|=\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}
\end{aligned}
$$

Magnitude of Velocity

For motion along a space curve, the definitions are similar. That is, for

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

you have the following.

Three Dimensions

$$
\left.\begin{array}{rl}
\text { Velocity }=\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}+z^{\prime}(t) \mathbf{k} \\
\text { Acceleration }=\mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t)=x^{\prime \prime}(t) \mathbf{i}+y^{\prime \prime}(t) \mathbf{j}+z^{\prime \prime}(t) \mathbf{k} \\
\text { Speed }=\|\mathbf{v}(t)\| & =\left\|\mathbf{r}^{\prime}(t)\right\|
\end{array}\right)=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}}
$$

$$
\begin{aligned}
\mathbf{r}(t) & =-\frac{1}{2} g t^{2} \mathbf{j}+t \mathbf{v}_{0}+\mathbf{r}_{0} \quad \text { Position vector } \\
& =-\frac{1}{2} g t^{2} \mathbf{j}+t \mathbf{v}_{0} \cos \theta \mathbf{i}+t \mathbf{v}_{0} \sin \theta \mathbf{j}+h \mathbf{j} \\
& =\left(\mathbf{v}_{0} \cos \theta\right) t \mathbf{i}+\left[h+\left(\mathbf{v}_{0} \sin \theta\right) t-\frac{1}{2} g t^{2}\right] \mathbf{j}
\end{aligned}
$$

Theorem 12.3 Position Vector for a Projectile

Neglecting air resistance, the path of a projectile launched from an initial height h with initial speed v_{0} and angle of elevation θ is described by the vector function

$$
\mathbf{r}(t)=\left(v_{0} \cos \theta\right) t \mathbf{i}+\left[h+\left(v_{0} \sin \theta\right) t-\frac{1}{2} g t^{2}\right] \mathbf{j}
$$

where g is the acceleration due to gravity.

Summary of Velocity, Acceleration, and Curvature

Unless noted otherwise, let C be a curve (in the plane or in space) given by the position vector

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j} \quad \text { Curve in the plane }
$$

or

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k} \quad \text { Curve in space }
$$

where x, y, and z are twice-differentiable functions of t.
Velocity vector, speed, and acceleration vector

$$
\begin{aligned}
\mathbf{v}(t) & =\mathbf{r}^{\prime}(t) \quad \text { Velocity vector } \\
\|\mathbf{v}(t)\| & =\left\|\mathbf{r}^{\prime}(t)\right\|=\frac{d s}{d t} \quad \text { Speed } \\
\mathbf{a}(t) & =\mathbf{r}^{\prime \prime}(t) \quad \text { Acceleration vector } \\
& =a_{\mathbf{T}} \mathbf{T}(t)+a_{\mathbf{N}} \mathbf{N}(t) \\
& =\frac{d^{2} s}{d t^{2}} \mathbf{T}(t)+K\left(\frac{d s}{d t}\right)^{2} \mathbf{N}(t) \quad K \text { is curvature and } \frac{d s}{d t} \text { is speed. }
\end{aligned}
$$

Unit tangent vector and principal unit normal vector

$$
\begin{array}{ll}
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|} & \text { Unit tangent vector } \\
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|} & \text { Principal unit normal vector }
\end{array}
$$

[^0]
Summary of Velocity, Acceleration, and Curvature

(Continued)

Components of acceleration

$$
\begin{aligned}
a_{\mathbf{T}} & =\mathbf{a} \cdot \mathbf{T}=\frac{\mathbf{v} \cdot \mathbf{a}}{\|\mathbf{v}\|}=\frac{d^{2} s}{d t^{2}} \quad \text { Tangential component of acceleration } \\
a_{\mathbf{N}} & =\mathbf{a} \cdot \mathbf{N} \quad \text { Normal component of acceleration } \\
& =\frac{\|\mathbf{v} \times \mathbf{a}\|}{\|\mathbf{v}\|} \\
& =\sqrt{\|\mathbf{a}\|^{2}-a_{\mathbf{T}}^{2}} \\
& =K\left(\frac{d s}{d t}\right)^{2} \quad K \text { is curvature and } \frac{d s}{d t} \text { is speed. }
\end{aligned}
$$

Formulas for curvature in the plane

$$
\begin{array}{ll}
K=\frac{\left|y^{\prime \prime}\right|}{\left[1+\left(y^{\prime}\right)^{2}\right]^{3 / 2}} & C \text { given by } y=f(x) \\
K=\frac{\left|x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right|}{\left[\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right]^{3 / 2}} & C \text { given by } x=x(t), y=y(t)
\end{array}
$$

Formulas for curvature in the plane or in space

$$
\begin{aligned}
& K=\left\|\mathbf{T}^{\prime}(s)\right\|=\left\|\mathbf{r}^{\prime \prime}(s)\right\| \quad s \text { is arc length parameter. } \\
& K=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}} \quad t \text { is general parameter. } \\
& K=\frac{\mathbf{a}(t) \cdot \mathbf{N}(t)}{\|\mathbf{v}(t)\|^{2}}
\end{aligned}
$$

Cross product formulas apply only to curves in space.

Arc Length of a Space Curve:

$$
s=\int_{a}^{b}\left\|\boldsymbol{r}^{\prime}(t)\right\| d t
$$

[^0]: Velocity Vector, aka Tangent Vector

