MAT 160 – Spring 2011 – Professor Given Summary of the Uses of the First and Second Derivatives

First Derivative	Second Derivative
Solving $f'(x) = 0$ or dne gives critical numbers, the possible extrema	Solving $f''(x) = 0$ or dne gives PPOI, the possible points of inflection
$f' > 0 \Rightarrow f$ increasing $f' < 0 \Rightarrow f$ decreasing	$f'' > 0 \Rightarrow f$ concave up $f'' < 0 \Rightarrow f$ concave down
A change in the sign of f' indicates an extrema	A change in the sign of f'' indicates a POI

First Derivative Test	Second Derivative Test
Gives a conclusion of max, min, or neither for every critical number	Can only give a conclusion of max or min for critical number satisfying both $f'(c) = 0$ and $f''(c) \neq 0$
Substitute points to left and right of critical number:	Substitute critical number directly into f'' :
$-+ \Rightarrow \min \text{ at } x = c$ $+- \Rightarrow \max \text{ at } x = c$ $\begin{cases} ++ \\ \end{cases} \Rightarrow \text{neither max nor min at } x = c$	$f''(c) > 0 \Rightarrow \min \text{ at } x = c$ $f''(c) < 0 \Rightarrow \max \text{ at } x = c$