In the Sullivan Algebra \& Trigonometry textbook, this property is stated as:

Reciprocal Property for Inequalities

If $a>0$, then $\frac{1}{a}>0 \quad$ If a number is positive, then its reciprocal is also positive.
If $a<0$, then $\frac{1}{a}<0 \quad$ If a number is negative, then its reciprocal is also negative.

Case 1: If $a>0$, then $\frac{1}{a}>0$
Example:
$(3 x-12)^{-1}>0$
$\frac{1}{3 x-12}>0$
$3 x-12>0$
$3 x>12$
$x>4$

My Thoughts on the Reciprocal Property for Inequalities

The principle is a shortcut for simplifying a rational inequality in the form of $\frac{1}{a}>0$ or $\frac{1}{a}<0$.
It was difficult to understand the shortcut jump made from $\frac{1}{3 x-12}>0$ to $3 x-12>0$.
I needed to see the intermediate steps of the shortcut so I can understand how this principle is valid. So instead of using the Reciprocal Property for Inequalities, I used algebraic techniques to solve an example rational inequality.
$(3 x-12)^{-1}>0$
$(3 x-12)^{+2} *(3 x-12)^{-1}>0 *(3 x-12)^{+2} \quad$ Multiply both sides by exponent ${ }^{+2}$. Add exponents.
$(3 x-12)^{+1}>0 \quad$ Result on left side has an exponent ${ }^{+1}$. Right side value remains 0.
$3 x-12>0 \quad$ An expression with exponent ${ }^{+1}$ is that same expression; removed parenthesis.
$3 x>12$
$x>4$

Notes:

- Since exponent of original problem is -1 , I multiplied both sides by the same expression but with an exponent of +2 . I chose +2 because when multiplying the binomials on the left, the exponents would sum up to +1 and therefore I can remove the parenthesis and solve for x.
- This technique also works for the case:
- If $a<0$, then $\frac{1}{a}<0$
- Because 0 multiplied by a squared power is still zero, the inequality remains true.

A Simpler Example Using Algebraic Techniques:

Case 2: If $a<0$, then $\frac{1}{a}<0$

Let $a=-2$
$-2<0$
$-2 *\left(-\frac{1}{2}\right)^{2}<0 *\left(-\frac{1}{2}\right)^{2} \quad$ Multiply both sides by $\left(-\frac{1}{2}\right)^{2}$.
$-2 *\left(\frac{1}{4}\right)<0$
$-\frac{1}{2}<0 \quad$ Inequality is still true.

