Properties of Logarithmic Functions

DEFINITION Logarithmic Function with Base a

The logarithmic function with base *a*, where a > 0 and $a \neq 1$, is denoted by $y = \log_a x$ (read as "*y* is the logarithm with base *a* of *x*") and is defined by

 $y = \log_a x$ if and only if $x = a^y$

The domain of the logarithmic function $y = \log_a x$ is x > 0.

- Domain of the logarithmic function = Range of the exponential function = $(0, \infty)$
- Range of the logarithmic function = Domain of the exponential function = $(-\infty, \infty)$

 $y = \log_a x$ if and only if $x = a^y$ Domain: $0 < x < \infty$ Range: $-\infty < y < \infty$

Properties of the Logarithmic Function $f(x) = \log_a x$; a > 0, $a \neq 1$

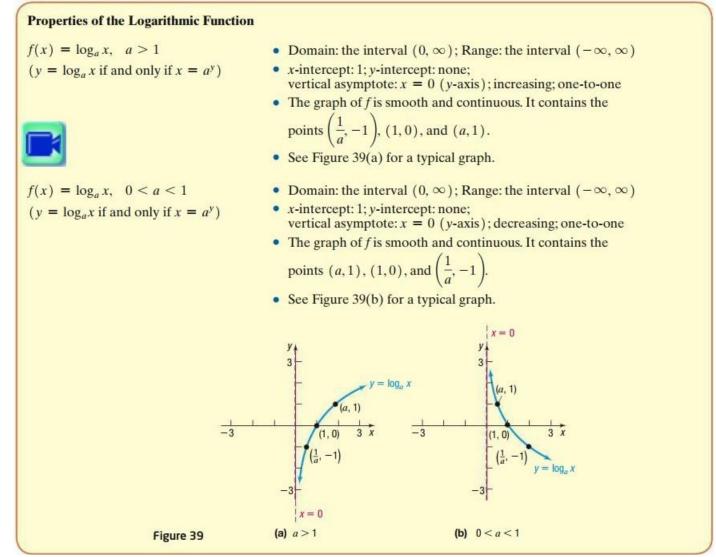
- The domain is the set of positive real numbers, or (0,∞) using interval notation; the range is the set of all real numbers, or (-∞,∞) using interval notation.
- The *x*-intercept of the graph is 1. There is no *y*-intercept.
- The y-axis (x = 0) is a vertical asymptote of the graph of f.
- A logarithmic function is decreasing if 0 < a < 1 and is increasing if a > 1.
- The graph of f contains the points $(1, 0), (a, 1), and \left(\frac{1}{a}, -1\right)$.
- The graph is smooth and continuous, with no corners or gaps.

 $y = \ln x$ if and only if $x = e^y$

(1)

$y = \log x$ if and only if $x = 10^{y}$

SUMMARY



THEOREM Properties of Logarithms

In these properties, M and a are positive real numbers, $a \neq 1$, and r is any real number.

• The number $\log_a M$ is the exponent to which *a* must be raised to obtain *M*. That is,

 $a^{\log_a M} = M$

• The logarithm with base a of a raised to a power equals that power. That is,

 $\log_a a^r = r$

THEOREM Properties of Logarithms

In these properties, M, N, and a are positive real numbers, $a \neq 1$, and r is any real number.

The Log of a Product Equals the Sum of the Logs

$$\log_a(MN) = \log_a M + \log_a N \tag{3}$$

The Log of a Quotient Equals the Difference of the Logs

$$\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N \tag{4}$$

The Log of a Power Equals the Product of the Power and the Log

 $\log_a M^r = r \log_a M$

 $a^r = e^{r \ln a}$

(1)

(2)

(5)

(6)

THEOREM Properties of Logarithms

In these properties, M, N, and a are positive real numbers, $a \neq 1$.

• If M = N, then $\log_a M = \log_a N$. (7)

(8)

(9)

• If
$$\log_a M = \log_a N$$
, then $M = N$

THEOREM Change-of-Base Formula

If $a \neq 1, b \neq 1$, and M are positive real numbers, then

$$\log_a M = \frac{\log_b M}{\log_b a}$$

$$\log_a M = \frac{\log M}{\log a}$$
 and $\log_a M = \frac{\ln M}{\ln a}$

SUMMARY

Properties of Logarithms			
In the list that follows, a, b, M, N , and r are real numbers. Also, $a > 0, a \neq 1, b > 0, b \neq 1, M > 0$, and $N > 0$.			
Definition $y = \log_a x$ if and only if $x = a^y$			
Properties of logarithms	• $\log_a 1 = 0$	• $\log_a a = 1$	• $\log_a M^r = r \log_a M$
	• $a^{\log_a M} = M$	• $\log_a a^r = r$	• $a^r = e^{r \ln a}$
	• $\log_a(MN) = \log_a M + 1$	$\log_a(MN) = \log_a M + \log_a N \qquad \bullet \ \log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N$	
	• If $M = N$, then $\log_a M =$	$\log_a N.$ • If \log_a	$M = \log_a N$, then $M = N$.
Change-of-Base Formula	$\log_a M = \frac{\log_b M}{\log_b a}$		