(1)

Properties of Exponential Functions

THEOREM Laws of Exponents

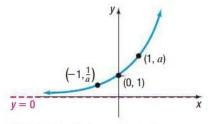
If s, t, a, and b are real numbers with a > 0 and b > 0, then

- $a^s \cdot a^t = a^{s+t}$ $(a^s)^t = a^{st}$ $(ab)^s = a^s \cdot b^s$

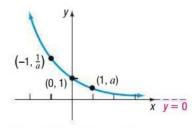
- $1^s = 1$ $a^{-s} = \frac{1}{a^s} = \left(\frac{1}{a}\right)^s$ $a^0 = 1$

DEFINITION Exponential Function

An exponential function is a function of the form


$$f(x) = Ca^x$$

where a is a positive real number (a > 0), $a \ne 1$, and $C \ne 0$ is a real number. The domain of f is the set of all real numbers. The base a is the growth factor, and, because $f(0) = Ca^0 = C$, C is called the **initial value**.


THEOREM

For an exponential function $f(x) = Ca^x$, a > 0, $a \ne 1$, and $C \ne 0$, if x is any real number, then

$$\frac{f(x+1)}{f(x)} = a \quad \text{or} \quad f(x+1) = af(x)$$

Figure 21 $f(x) = a^x, a > 1$

Figure 25 $f(x) = a^x, 0 < a < 1$

Properties of the Exponential Function $f(x) = a^x$, a > 1

- The domain is the set of all real numbers, or $(-\infty, \infty)$ using interval notation; the range is the set of positive real numbers, or $(0, \infty)$ using interval notation.
- There are no x-intercepts; the y-intercept is 1.
- The x-axis (y = 0) is a horizontal asymptote of the graph of f as $x \to -\infty$.
- $f(x) = a^x$, a > 1, is an increasing function and is one-to-one.
- The graph of f contains the points $\left(-1, \frac{1}{a}\right)$, (0, 1) and (1, a).
- The graph of f is smooth and continuous, with no corners or gaps.
 See Figure 21.

Properties of the Exponential Function $f(x) = a^x$, 0 < a < 1

- The domain is the set of all real numbers, or $(-\infty, \infty)$ using interval notation; the range is the set of positive real numbers, or $(0, \infty)$ using interval notation.
- There are no x-intercepts; the y-intercept is 1.
- The x-axis (y = 0) is a horizontal asymptote of the graph of f as $x \to \infty$.
- $f(x) = a^x$, 0 < a < 1, is a decreasing function and is one-to-one.
- The graph of f contains the points $\left(-1, \frac{1}{a}\right)$, (0, 1), and (1, a).
- The graph of f is smooth and continuous, with no corners or gaps. See Figure 25.

DEFINITION Number e

The **number** e is defined as the number that the expression

$$\left(1+\frac{1}{n}\right)^n\tag{2}$$

approaches as $n \to \infty$. In calculus, this is expressed, using limit notation, as

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

If
$$a^u = a^v$$
, then $u = v$. (3)

SUMMARY

Properties of the Exponential Function

$$f(x) = a^x$$
, $a > 1$

- Domain: the interval $(-\infty, \infty)$; range: the interval $(0, \infty)$
- x-intercepts: none; y-intercept: 1
- Horizontal asymptote: x-axis (y = 0) as $x \to -\infty$
- Increasing; one-to-one; smooth; continuous
- See Figure 21 for a typical graph.

$$f(x) = a^x, \quad 0 < a < 1$$

- Domain: the interval $(-\infty, \infty)$; range: the interval $(0, \infty)$
- *x*-intercepts: none; *y*-intercept: 1
- Horizontal asymptote: x-axis (y = 0) as $x \to \infty$
- Decreasing; one-to-one; smooth; continuous
- See Figure 25 for a typical graph.

If
$$a^u = a^v$$
, then $u = v$.