CHAPTER R - Review

SECTION R. 4 - Polynomials

Special Products

Difference of Two Squares

$$
(x-a)(x+a)=x^{2}-a^{2}
$$

Squares of Binomials,

$$
(x+a)^{2}=x^{2}+2 a x+a^{2}
$$

Or Perfect Squares
$(x-a)^{2}=x^{2}-2 a x+a^{2}$
Cubes of Binomials,

$$
(x+a)^{3}=x^{3}+3 a x^{2}+3 a^{2} x+a^{3}
$$

Or Perfect Cubes
$(x-a)^{3}=x^{3}-3 a x^{2}+3 a^{2} x-a^{3}$
Difference of Two Cubes

$$
(x-a)\left(x^{2}+a x+a^{2}\right)=x^{3}-a^{3}
$$

Sum of Two Cubes

$$
(x+a)\left(x^{2}-a x+a^{2}\right)=x^{3}+a^{3}
$$

SECTION R. 5 - Factoring Polynomials

Special Formulas

Difference of Two Squares
Perfect Squares

Sum of Two Cubes
Difference of Two Cubes

$$
x^{2}-a^{2}=(x-a)(x+a)
$$

$$
x^{2}+2 a x+a^{2}=(x+a)^{2}
$$

$$
x^{2}-2 a x+a^{2}=(x-a)^{2}
$$

$$
x^{3}+a^{3}=(x+a)\left(x^{2}-a x+a^{2}\right)
$$

$$
x^{3}-a^{3}=(x-a)\left(x^{2}+a x+a^{2}\right)
$$

CHAPTER 1 - Equations and Inequalities

SECTION 1.2 - Quadratic Equations

Quadratic Equation in Standard Form

$$
a x^{2}+b x+c=0
$$

Or Second-Degree Equation

Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

SECTION 1.3 - Quadratic Equations in the Complex Number System

Powers of \boldsymbol{i}

$$
\begin{aligned}
& i^{1}=i=\sqrt{-1} \\
& i^{2}=-1 \\
& i^{3}=i^{2} \cdot i=-1 \cdot i=-i \\
& i^{4}=i^{2} \cdot i^{2}=(-1)(-1)=1
\end{aligned}
$$

SECTION 1.6 - Equations and Inequalities Involving Absolute Value
Equations Involving Absolute Value $\quad|u|=a$ is equivalent to $u=a$ or $u=-a$
Inequalities Involving Absolute Value

$$
\begin{array}{ll}
\text { Ig Absolute Value } & |u|<a \text { is equivalent to }-a<u<a \\
& |u| \leq a \text { is equivalent to }-a \leq u \leq a \\
\text { Also written as: } & |u|<a \text { is equivalent to }-a<u \text { and } u<a \\
& |u| \leq a \text { is equivalent to }-a \leq u \text { and } u \leq a
\end{array}
$$

Inequalities Involving Absolute Value

$$
\begin{aligned}
& |u|>a \text { is equivalent to } u<-a \text { or } u>a \\
& |u| \geq a \text { is equivalent to } u \leq-a \text { or } u \geq a
\end{aligned}
$$

CHAPTER 2-Graphs

SECTION 2.1 - Rectangular Coordinates

Distance Formula

$$
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Midpoint Formula

$$
M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

SECTION 2.3 - Circles

Standard Form of an Equation of a Circle

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& x^{2}+y^{2}=r^{2}
\end{aligned}
$$

Standard Form of an Equation of a Circle
With Center at Origin
Standard Form of an Equation of a Circle $\quad x^{2}+y^{2}=1$
With Center at Origin and Radius $r=1$
Called the Unit Circle
General Form of an Equation of a Circle

$$
x^{2}+y^{2}+a x+b y+c=0
$$

