## Chapter 2 - Applications of Differentiation

## Section 2.1 - Using First Derivatives to Find Maximum and Minimum Values and Sketch Graphs

THE FIRST-DERIVATIVE TEST (FDT) FOR RELATIVE EXTREMA - Pg. 203

1. If $f^{\prime}(x)<0$ to the left of critical value (cv) and $f^{\prime}(x)>0$ to its right, have relative min.
2. If $f^{\prime}(x)>0$ to the left of $c v$ and $f^{\prime}(x)<0$ to its right, have relative max.
3. If have same sign to the left of $c v$ and to its right, neither a relative min nor max.

## FIND RELATIVE EXTREMA THEN SKETCH GRAPH - Pg. 206

Note: Endpoints of a closed interval $[a, b]$ can be absolute extrema but not relative extrema.

1. Find critical values ( $c v$ 's):
a. Find $f^{\prime}(x)$
b. Set $f^{\prime}(x)=0$ to find $c v^{\prime}$ s.
c. Find where $f^{\prime}(x)$ is undefined (but $f(x)$ is defined) to get additional $c v$ 's.
i. (Polynomial functions are defined for all real numbers.)
d. Find $y$-value for each $c v$ by substituting $c v$ 's into $f(x)$ to use for graphing later.
e. Note: $c v$ 's do not guarantee relative extrema; they are candidates.
2. Use $c v$ 's to divide $x$-axis number line into intervals.
a. Choose a test value in each interval.
3. Substitute test values into $f^{\prime}(x)$ to determine sign of result (+or - ) in each interval.
a. Use FDT criteria to determine any relative extrema.
4. Graph the function:
a. Plot points already found in Step 1d above.
b. Plot additional points using table of values:
i. Choose a number for $x$ to find its $y$-value. Or choose a number for $y$ to find its $x$-value. Substitute numbers into $f(x)$
ii. Plot enough points to fill out graph.

A TEST FOR CONCAVITY - Pg. 216

1. If $f^{\prime \prime}(x)>0$, graph is concave up. $f^{\prime}(x)$ is increasing, $f(x)$ is turning up.
2. If $f^{\prime \prime}(x)<0$, graph is concave down. $f^{\prime}(x)$ is decreasing, $f(x)$ is turning down.

THE SECOND-DERIVATIVE TEST (SDT) FOR RELATIVE EXTREMA - Pg. 218

1. $f(c)$ is a relative $\min$ if $f^{\prime \prime}(c)>0$
2. $f(c)$ is a relative max if $f^{\prime \prime}(c)<0$
3. If $f^{\prime \prime}(c)=0$, use FDT to determine relative extremum.

Note: the critical value $c$ is substituted into $f^{\prime \prime}(x)$ to determine the sign for SDT.

## FINDING POINTS OF INFLECTION (POI) - Pg. 221

Note: POI is a change in direction of concavity.

1. Find possible points of inflection (PPOIs) at $x_{0}$
a. Find where $f^{\prime \prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)$ does not exist.
b. Find $y$-value of PPOI's by substituting $x_{0}$ 's into $f(x)$ to use for graphing later.
2. Determine whether the PPOIs are actually POIs:
a. Use $x_{0}$ 's to divide $x$-axis number line into intervals.
b. Choose a test value in each interval.
c. Substitute test values into $f^{\prime \prime}(x)$ to determine sign of result ( + or - ) in each interval.
i. If sign is different to the left of $x_{0}$ than to its right, have POI.
ii. If sign is same to the left of $x_{0}$ as to its right, no POI.
iii. Find $y$-value of POI's by substituting $x_{0}$ 's into $f(x)$ to use for graphing later.

## STRATEGY FOR SKETCHING GRAPHS - POLYNOMIAL FUNCTIONS - Pg. 222

1. Derivatives and domain:
a. Find $f^{\prime}(x)$
b. Find $f^{\prime \prime}(x)$
c. Find domain of $f(x)$. (Domain of polynomial functions is all real numbers.)
2. Critical values (cv's) of $f(x)$
a. Set $f^{\prime}(x)=0$ to find $c v^{\prime}$ s.
b. Find where $f^{\prime}(x)$ is undefined (but $f(x)$ is defined) to get additional $c v$ 's.
i. (Polynomial functions are defined for all real numbers.)
c. Find $y$-value for each $c v$ by substituting $c v$ 's into $f(x)$ to use for graphing later.
d. Note: $c v$ 's do not guarantee relative extrema; they are candidates.
3. Increasing / decreasing; and relative extrema:
a. Substitute $c v$ 's into $f^{\prime \prime}(x)$ for SDT.
b. If $f^{\prime \prime}(c)<0$, have relative max
i. $f(x)$ is increasing to the left of $c v$ and decreasing to its right. List interval.
c. If $f^{\prime \prime}(c)>0$, have relative min
i. $f(x)$ is decreasing to the left of $c v$ and increasing to its right. List interval.
d. If $f^{\prime \prime}(c)=0$, must use FDT to see if have relative extrema.
4. Points of Inflection (POIs):

Note: POI is a change in direction of concavity.
a. Find possible points of inflection (PPOIs) at $x_{0}$
i. Find where $f^{\prime \prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)$ does not exist.
ii. Find $y$-value of PPOI's by substituting $x_{0}$ 's into $f(x)$ to use for graphing later.
b. Determine whether the PPOIs are actually POIs:
i. Use $x_{0}$ 's to divide $x$-axis number line into intervals.
ii. Choose a test value in each interval.
iii. Substitute test values into $f^{\prime \prime}(x)$ to determine sign of result (+or - ) in each interval.

1. If sign is different to the left of $x_{0}$ than to its right, have POI.
2. If sign is same to the left of $x_{0}$ as to its right, no POI.
3. Find $y$-value of POI's by substituting $x_{0}$ 's into $f(x)$ to use for graphing later.
4. Concavity:
a. List intervals of concavity using the PPOI $x$-axis number line in Step 4.
b. If result in Step 4 was:
i. $f^{\prime \prime}(x)>0$, graph is concave up on that PPOI interval.
ii. $f^{\prime \prime}(x)<0$, graph is concave down on that PPOI interval.
5. Sketch the graph:
a. Plot points already found in Step 2 and Step 4 above.
b. Plot additional points using table of values:
i. Choose a number for $x$ to find its $y$-value. Or choose a number for $y$ to find its $x$-value. Substitute numbers into $f(x)$
ii. Plot enough points to fill out graph.
c. Use the intervals table on next page to help sketch graphs of polynomial functions.

Example: The polynomial function below is sketched using the intervals table below. $f(x)=3 x^{5}-20 x^{3}$

Graph below courtesy of Desmos Graphing Calculator


Intervals Table for Sketching Graphs - Polynomial Functions (Example)


Notes:

- The values in the table above are from the example problem. Notice that the last row of table, Graph Shape, agrees with the graph image for all intervals.
- Partition the interval line with $x$-values from: $x$-intercepts, critical values, PPOI's.
o List the $x$-values in numerical order from left to right.
0 In example above, the $x$-values are:
- $x$-intercepts: $\approx-2.6, \approx+2.6$
- Critical values: $-2,+2$
- PPOI's: $\approx-1.4,0, \approx+1.4$
- Substitute test values $x$ into $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ to calculate the signs.
o Then based on the signs, determine if function is increasing/decreasing and concavity.
o Finally for each interval, sketch a graph shape based on increasing/decreasing and concavity.


## Section 2.3 - Graph Sketching: Asymptotes and Rational Functions

VERTICAL ASYMPTOTE (VA) - Pg. 235
$\lim _{x \rightarrow a^{-}} f(x)=\infty$
$\lim _{x \rightarrow a^{-}} f(x)=-\infty$
$\lim _{x \rightarrow a^{+}} f(x)=\infty$
$\lim _{x \rightarrow a^{+}} f(x)=-\infty$
Notes:

- A rational function may or may not have VA. Will not have VA if denominator will never be 0 .
- If original rational function is already simplified (cannot factor), then if $a$ makes denominator 0 , have VA at $x=a$.
- If factored and cancelled a factor of the rational function, there is no VA at $a$ that made denominator 0 . Instead, it is called a "point of discontinuity," a "hole."
- Graph of rational function never crosses VA.

HORIZONTAL ASYMPTOTE (HA) - Pg. 237
$\lim _{x \rightarrow-\infty} f(x)=b$
$\lim _{x \rightarrow \infty} f(x)=b$
Notes:

- HA occurs when degree of numerator $\leq$ degree of denominator.
o When degree of numerator = degree of denominator, HA is the leading coefficients of numerator and denominator.
o When degree of numerator $<$ degree of denominator, HA is the $x$-axis $(y=0)$.
- Graph of rational function may or may not cross an HA.
- Graph of rational function can have at most 2 HA's.


## SLANT ASYMPTOTE (OBLIQUE ASYMPTOTE) - Pg. 239

Notes:

- Slant Asymptote occurs when degree of numerator is exactly 1 more than the degree of denominator.
- To find the linear slant asymptote, divide the numerator by the denominator using long division. The quotient is the slant asymptote.
- Graph of rational function can cross a slant asymptote.
- A rational function will have either an HA or a slant asymptote, but not both.


## INTERCEPTS - Pg. 240

Notes:

- $x$-Intercepts:
o To find $x$-intercepts of rational function, set $f(x)=0$.
o The $x$-intercepts occur when the numerator is zero and the denominator is not zero.
o Factor numerator and denominator.
o Set numerator $=0$ and solve for $x$.
o Check that these $x$-values do not make the denominator 0 also. If any do, they are not $x$ intercepts.
- $y$-Intercept:
o To find $y$-intercept of rational function, set $f(0)$.


## STRATEGY FOR SKETCHING GRAPHS - RATIONAL FUNCTIONS - Pg. 241

1. Intercepts:
a. Find the $x$-intercepts and the $y$-intercept.
2. Asymptotes:
a. Find any VA's, HA's, or slant asymptotes.
3. Derivatives and domain:
a. Find $f^{\prime}(x)$
b. Find $f^{\prime \prime}(x)$
c. Find domain of $f(x)$. List $x$-values that make denominator $=0$ (from VA step).
4. Critical values (cv's) of $f(x)$
a. Set $f^{\prime}(x)=0$ to find $c v^{\prime}$ s. Set numerator $=0$.
b. Find where $f^{\prime}(x)$ is undefined (but $f(x)$ is defined) to get additional $c v$ 's.
c. Find $y$-value for each $c v$ by substituting $c v$ 's into $f(x)$ to use for graphing later.
d. Note: $c v$ 's do not guarantee relative extrema; they are candidates.
5. Increasing / decreasing; and relative extrema:
a. Substitute $c v$ 's into $f^{\prime \prime}(x)$ for SDT.
b. If $f^{\prime \prime}(c)<0$, have relative max
i. $f(x)$ is increasing to the left of $c v$ and decreasing to its right. List interval.
c. If $f^{\prime \prime}(c)>0$, have relative min
i. $f(x)$ is decreasing to the left of $c v$ and increasing to its right. List interval.
d. If $f^{\prime \prime}(c)=0$, must use FDT to see if have relative extrema.
6. Points of Inflection (POIs):

Note: POI is a change in direction of concavity.
a. Find possible points of inflection (PPOIs) at $x_{0}$
i. Find where $f^{\prime \prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)$ does not exist.

1. If $x_{0}$ does not exist at $f(x)$, not a PPOI.
ii. Find $y$-value of PPOI's by substituting $x_{0}$ 's into $f(x)$ to use for graphing later.
b. Determine whether the PPOIs are actually POIs:
i. Use $x_{0}$ 's to divide $x$-axis number line into intervals.
ii. Choose a test value in each interval.
iii. Substitute test values into $f^{\prime \prime}(x)$ to determine sign of result $(+$ or -$)$ in each interval.
2. If sign is different to the left of $x_{0}$ than to its right, have POI.
3. If sign is same to the left of $x_{0}$ as to its right, no POI.
4. Find $y$-value of POI's by substituting $x_{0}$ 's into $f(x)$ to use for graphing later.
5. Concavity:
a. List intervals of concavity using the PPOI $x$-axis number line in Step 6.
b. If result in Step 6 was:
i. $f^{\prime \prime}(x)>0$, graph is concave up on that PPOI interval.
ii. $f^{\prime \prime}(x)<0$, graph is concave down on that PPOI interval.
6. Sketch the graph:
a. Plot points already found in Step 4 and Step 6 above.
b. Plot additional points using table of values:
i. Choose a number for $x$ to find its $y$-value. Or choose a number for $y$ to find its $x$ value. Substitute numbers into $f(x)$
ii. Plot enough points to fill out graph.
c. Use the intervals table on next page to help sketch graphs of rational functions.

Example: The rational function below is sketched using the intervals table on next page.
$f(x)=\frac{x^{2}+4}{x^{2}-4}$


Intervals Table for Sketching Graphs - Rational Functions (Example)

| Interval Line |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Test Values $x$ | $x=-10$ | $x=-1$ | $x=+1$ | $x=+10$ |
| $f(x)$ Value | $\begin{aligned} & +1.08>+ \\ & \text { (above HA } \end{aligned}$ | -- | -- | $\begin{aligned} & +1.08>+1 \\ & \text { (above HA) } \end{aligned}$ |
| $f^{\prime}(x)$ Sign | $\frac{+}{+}=+$ | $\frac{+}{+}=+$ | $\frac{-}{+}=-$ | $\frac{-}{+}=-$ |
| $f^{\prime \prime}(x)$ Sign | $\frac{+}{+}=+$ | $\frac{+}{-}=-$ | $\frac{+}{-}=-$ | $\frac{+}{+}=+$ |
| Increasing / <br> Decreasing | Increasing | Increasing | Decreasing | Decreasing |
| Concave up / Down | Concave U | Concave Dow | Concave Dow | Concave Up |
| Graph Shape |  | $\lambda$ |  |  |

## Notes:

- The values in the table are from the example problem on previous page. Notice that the last row of table, Graph Shape, agrees with the graph image for all intervals.
- Partition the interval line with $x$-values from: $x$-intercepts, VA's, critical values, PPOI's.

0 List the $x$-values in numerical order from left to right.
o In example above, the $x$-values are -2 (VA), 0 (cv), and +2 (VA).

- The $f(x)$ Value row is used to determine the end behavior of the horizontal asymptote (HA).
o The test values of $x=-10$ and $x=+10$ both result in the $f(x)$ value of +1.08 , which is greater than the HA of $y=1$. This means that the end behavior of the rational function places the graph above the HA at both ends on the $x$-axis.
0 Choose fairly large $x$-values to test for end behavior of HA.
o The "inside" intervals for $f(x)$ do not need to be computed and have "--" in the table cell.
- Substitute test values $x$ into $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ to calculate the signs.
o Then based on the signs, determine if function is increasing/decreasing and concavity.
o Finally for each interval, sketch a graph shape based on increasing/decreasing and concavity.
o Note: This $\frac{-}{+}=-$ indicates the sign of the numerator, denominator, and the overall sign.
- To determine end behavior of a vertical asymptote, take the limit to the left and to the right of the VA.
o If the limit is negative, the graph is decreasing on that side of the VA.
o If the limit is positive, the graph is increasing on that side of the VA.
o Note: This is not shown in the table above.

MAXIMUM-MINIMUM PINCIPLE 1 - Pg. 251
For a closed interval $[a, b]$.

1. Find $f^{\prime}(x)$
2. Find critical values (cv's) in $[a, b]$
a. Find where $f^{\prime}(c)=0$ and $f^{\prime}(c)$ does not exist.
b. A $c v$ must be within interval $[a, b]$ to be considered for a max or min.
3. List values from Step 2 and the endpoints of the interval $[a, b]$.
4. Evaluate $f(x)$ for each value in Step 3.
a. Largest value is absolute max
b. Smallest value is absolute min

Notes:

- Absolute max and min values can occur at more than one point.
- Endpoints of a closed interval $[a, b]$ can be absolute extrema but not relative extrema.


## MAXIMUM-MINIMUM PINCIPLE 2 - Pg. 253

For exactly one $c v$ in interval $I$.

1. Find $f^{\prime}(x)$
a. $f^{\prime}(x)=0$ produces exactly one $c v$.
2. Find $f^{\prime \prime}(x)$
a. If $f^{\prime \prime}(c)<0, f(c)$ is an absolute max
b. If $f^{\prime \prime}(c)>0, f(c)$ is a relative min
c. If $f^{\prime \prime}(c)=0$, use Maximum-Minimum Principle 1 ; or we must know more about the behavior of the function to declare an absolute max or min.
Notes:

- The critical value $c$ is substituted into $f^{\prime \prime}(x)$ to determine the sign for SDT.
- If the endpoints are not listed, they are considered to be $(-\infty, \infty)$.


## A STRATEGY FOR FINDING ABSOLUTE MAXIMUM AND MINIMUM VALUES - Pg. 255

1. Find $f^{\prime}(x)$
2. Find critical values.
a. Find where $f^{\prime}(c)=0$ and $f^{\prime}(c)$ does not exist.
3. If closed interval $[a, b]$ and:
a. There is more than one critical value, use Maximum-Minimum Principle 1.
b. There is exactly one critical value, use either Maximum-Minimum Principle 1 or MaximumMinimum Principle 2.
i. If it is easy to find $f^{\prime \prime}(x)$, use Maximum-Minimum Principle 2.
4. If open interval $(-\infty, \infty),(0, \infty)$, or $(a, b)$ and:
a. There is only one critical value, use Maximum-Minimum Principle 2.
i. Result will either be a max or min.
b. There is more than one critical value, beyond scope of this course.

## Section 2.5 - Maximum-Minimum Problems; Business and Economics Applications

A STRATEGY FOR SOLVING MAXIMUM-MINIMUM PROBLEMS - (Pg. 263)

1. Read problem carefully. Make a drawing if it makes sense to do so.
2. List variables and constants. Note unit of measure. Label measurements on drawing.
3. Translate verbiage to an equation with the quantity $Q$ to be minimized or maximized. Represent $Q$ in terms of the variables listed in Step 2.
4. Express $Q$ as a function of one variable. Determine max or min values and the points where they occur.

EX: 1 MAXIMIZE AREA - (Pg. 262)
Problem: Rectangular area needs to be fenced off only at 2 adjacent sides and maximized.
STEP 1 - "Make a drawing."

- Let $x$ be the dimensions of one side; (width or smaller side).
- Let $y$ be the dimensions of other side, (length or larger side).


STEP 2 - "List variables and constants, unit of measure. Label measurements on drawing."

- Have 20 feet of fencing available.
- Since $x+y=20$, solve for $y$ to have the 2 dimensions in terms of just one variable, $x$. So the length (larger side) becomes $y=20-x$. Relabel the $y$ side of drawing as $20-x$.


STEP 3 - "Translate to an equation with the quantity $Q$ to be maximized. Represent $Q$ in terms of the variables listed in Step 2."

- Since trying to find maximum area, need to use the Area Formula: $A=l w$
- Substitute problem variables (20-x and $x$ ) into Area Formula:
$A=l w \quad$ - Area Formula is the starting equation
$A=(20-x) x \quad$ - Area Formula after substituting problem variables

STEP 4 - "Express Q as a function of one variable. Determine max or min values and the points where they occur."
$A(x)=20 x-x^{2} \quad$ - Area Formula to be maximized, after multiplying and simplifying.

- Domain is $(0,20)$ since dimensions in feet cannot be $<0,0,20$, or $>20$.
- Find $A^{\prime}(x)=20-2 x$
- Set $A^{\prime}(x)=0$ to find critical values $c v$ 's.
o $20-2 x=0$
o $x=10$
- Since there's only 1 cv , use Maximum-Minimum Principle 2 (second derivative) to determine if this $c v$ is a maximum.
o $A^{\prime \prime}(x)=-2 \quad$ - This is a negative constant so the $c v x=10$ is a maximum.
- Conclusion:
o $x=10$ represents the dimension of 10 feet for side $x$.
o Substitute 10 for $x$ into $y=20-x \Rightarrow y=20-10 \Rightarrow y=10$ which represents the dimension of 10 feet for side $y$.
o Then find area by $A=l w \Rightarrow A=(10)(10) \Rightarrow A=100$
o The dimensions of the two sides should each be 10 feet to give a maximum area of $100 \mathrm{ft}^{2}$.
- Video Related To This Example: https://www.youtube.com/watch?v=jpFquCszOX0

EX: 2 MAXIMIZE VOLUME - (Pg. 264)
Problem: A cardboard 8 in. by 8 in. needs to have a square cut out from corners so the sides can be folded up to make an open-top box. What dimension will yield maximum volume? What is the maximum volume?

## STEP 1 - "Make a drawing."

- Let $x$ be the dimensions of each square corner to be cut.


STEP 2 - "List variables and constants, unit of measure. Label measurements on drawing."

- Since original square is 8 in. by 8 in., after the four corner squares ( $x$ 's) are cut out, the dimensions of the sides will be $(8-2 x)$ in. by $(8-2 x)$ in. The part labeled $x$ is going to be the height of the box after the sides are folded up.


STEP 3 - "Translate to an equation with the quantity $Q$ to be maximized. Represent $Q$ in terms of the variables listed in Step 2."

- Since trying to find maximum volume, need to use the Volume Formula: $V=l w h$
- Substitute problem variables of length, width, height $(8-2 x),(8-2 x), x$ into Volume Formula:
$V=l w h \quad-$ Volume Formula is the starting equation
$V=(8-2 x)(8-2 x) x-$ Volume Formula after substituting problem variables

STEP 4 - "Express Q as a function of one variable. Determine max or min values and the points where they occur."

$$
\begin{aligned}
V(x)=4 x^{3}-32 x^{2}+64 x \quad & \begin{array}{l}
\text { Volume Formula to be maximized, after multiplying and } \\
\\
\\
\text { simplifying. }
\end{array} \\
& \text { - Domain: since a side } 8-2 x>0, \text { each square corner } x<4 . \\
& \text { Therefore }(0,4) .
\end{aligned}
$$

- Find $V^{\prime}(x)=12 x^{2}-64 x+64$
- Set $V^{\prime}(x)=0$ to find critical values $c v$ 's.
o $12 x^{2}-64 x+64=0$
o $x=\frac{4}{3}, 4$
- Because the $c v 4$ is not in the domain ( 0,4 ), have only one $c v, \frac{4}{3}$.
- Since there's only 1 cv , use Maximum-Minimum Principle 2 (second derivative) to determine if this cv is a maximum.
$\begin{array}{ll}\text { o } & V^{\prime \prime}(x)=24 x-64 \\ \text { o } & V^{\prime \prime}\left(\frac{4}{3}\right)=24\left(\frac{4}{3}\right)-64 \Rightarrow 32-64<0\end{array}$
- Conclusion:
o $\quad x=\frac{4}{3}$ represents the $\frac{4}{3}$ in. of the corner square, $x$, that needs to be cut out to maximize the box's volume.
o After the $\frac{4}{3}$ in. has been cut out from each corner and the sides have been folded up, the dimensions of the two equal sides of the box will be: $8-2 x \Rightarrow 8-2\left(\frac{4}{3}\right) \Rightarrow 5 \frac{1}{3}$ in.
o The height of the box is $\frac{4}{3}$ in. which is obtained when the $x$ is cut out (the $\frac{4}{3}$ in.) and the remaining part of the side is folded up (the $5 \frac{1}{3}$ in.).
o The maximum volume of the box is:

$$
V(x)=4 x^{3}-32 x^{2}+64 x \Rightarrow V\left(\frac{4}{3}\right)=4\left(\frac{4}{3}\right)^{3}-32\left(\frac{4}{3}\right)^{2}+64\left(\frac{4}{3}\right) \Rightarrow 37 \frac{25}{27} i n^{3}
$$

- Video Related To This Example: https://www.youtube.com/watch?v=wCVuupUndb0

Ex: 3 Minimize Surface Area (Pg. 265) - https://www.youtube.com/watch?v=T1m8BN7UbOg Ex: 4 Maximize Revenue and Profit (Pg. 267) - https://www.youtube.com/watch? $\mathrm{v}=-\mathrm{TzmLSQZFoI}$

EXERCISE SET 2.5, \# 31: MAXIMIZE REVENUE (Determining a Ticket Price) - (Pg. 274)
Similar to Ex: 5 Maximize Revenue (Pg. 268)
Problem: A university is trying to determine what price to charge for tickets to football games. At a price of $\$ 18$ per ticket, attendance averages 40,000 people per game. Every decrease of $\$ 3$ adds 10,000 people to the average number. Every person at the game spends an average of $\$ 4.50$ on concessions. What price per ticket should be charged in order to maximize revenue? How many people will attend at that price?

## STEP 1 - "Make a drawing."

- Not applicable.


## STEP 2 - "List variables and constants, unit of measure."

- Revenue $=R(x)=$ Quantity •Price
- Two sources of revenue in this type of problem: ticket revenue + concession revenue.
- Ticket revenue:
o Ticket revenue with "normal" operation (average attendance with normal ticket price):
- Quantity $=40,000$ people
- Price $=\$ 18$ ticket price
- $R(x)=(40,000$ people $)(\$ 18)$
o Ticket revenue with problem constraints (restrictions on "normal" operation):
- Quantity $=40,000$ people $+10,000$ people (for every decrease of $\$ 3$ per ticket)
- $(40,000+10,000 x)$
- Note: The $x$ is the number of times the ticket is reduced by $\$ 3$. The $x$ represents some multiple of the number of times the ticket is reduced by $\$ 3$. The $x$ is a multiplier with the change in attendance.
- $\quad$ Price $=\$ 18$ and each occurrence that the ticket is decreased by $\$ 3$.
- $(18-3 x)$
- Note: As noted above, $x$ is the number of times the ticket is reduced by $\$ 3$. The $x$ represents some multiple of the number of times the ticket is reduced by $\$ 3$.
- Concession revenue:
o Concession revenue with "normal" operation (average attendance with normal concession spending):
- Quantity $=40,000$ people
- Price $=\$ 4.50$ concession spending per person
- $R(x)=(40,000$ people) $(\$ 4.50)$
o Concession revenue with problem constraints (restrictions on "normal" operation):
- Quantity $=40,000$ people $+10,000$ people (for every decrease of $\$ 3$ per ticket)
- Price = $\$ 4.50$ concession spending per person remains the same as "normal" operation. The $\$ 4.50$ is a constant.
- $(40,000+10,000 x)(4.50)$
- Note: The quantity "attendance" $(40,000+10,000 x)$ is the same for concession revenue as it is for ticket revenue.

STEP 3 - "Translate to an equation with the quantity $R(x)$ to be maximized. Represent $R(x)$ in terms of the variables listed in Step 2."

Find total revenue function:

$$
\begin{aligned}
& R(x)=\text { Total revenue }=(\text { Ticket revenue })+(\text { Concession revenue }) \\
& R(x)=(\text { Number of people })(\text { Ticket price })+(\text { Number of people }) \text { (Concession spending) } \\
& R(x)=(40,000+10,000 x)(18-3 x)+(40,000+10,000 x)(4.50) \\
& R(x)=720,000-120,000 x+180,000 x-30,000 x^{2}+180,000+45,000 x \\
& R(x)=-30,000 x^{2}+105,000 x+900,000
\end{aligned}
$$

Find $R^{\prime}(x)=-60,000 x+105,000$
Set $R^{\prime}(x)=0$ to find critical values $c v$ 's.

$$
\begin{aligned}
& -60,000 x+105,000=0 \\
& x=1.75
\end{aligned}
$$

Since there's only 1 cv , use Maximum-Minimum Principle 2 (second derivative) to determine if this $c v$ is a maximum.

$$
R^{\prime \prime}(x)=-60,000 \quad-\text { Since second derivative is a negative constant, } 1.75 \text { is a maximum. }
$$

- Conclusion:
o Price per ticket to charge:
$(18-3 x)$
$(18-3 \cdot 1.75) \quad$ - Substitute 1.75 for $x$
12.75 - To maximize profit, the ticket price should be $\$ 12.75$
o Attendance:
$(40,000+10,000 x)$
$(40,000+10,000 \cdot 1.75) \quad-$ Substitute 1.75 for $x$
57,000 - At a ticket price of $\$ 12.75$, the amount of people that will attend per game will be 57,000 .


## Additional Resources for This Type of Problem

- Videos:

0 https://www.youtube.com/watch?v=vfIFLryA_DU
o https://www.youtube.com/watch?v=WWkwunkQc-c

- How to Solve an Optimization Problem? (PDF) - By Dr. Mohammed Yahdi


## Chapter 4 - Integration

## Section 4.1 - Antidifferentiation

## RULES OF ANTIDIFFERENTIATION - Pg. 391

Constant Rule
$\int k d x=k x+C$

Power Rule
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1$

Natural Logarithm Rule
$\int \frac{1}{x} d x=\ln x+C, \quad x>0$
Exponential Rule (base e)
$\int e^{a x} d x=\frac{1}{a} e^{a x}+C, \quad a \neq 0$

## PROPERTIES OF ANTIDIFFERENTIATION - Pg. 393

$\int[c f(x)] d x=c \int f(x) d x$

## Section 4.2 - Antiderivatives as Areas

RIEMANN SUMMATION - Pg. 401-405
Area of Region Under the Curve
$\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x, \quad$ where $\Delta x=\frac{b-a}{n}$

## STEPS FOR THE PROCESS OF RIEMANN SUMMATION - Pg. 405

1. Draw the graph of $f(x)$.
2. Subdivide the interval $[a, b]$ into $n$ subintervals of equal width. Calculate the width of each rectangle by using the formula:

$$
\Delta x=\frac{b-a}{n}
$$

3. Construct rectangles above the subintervals such that the top left corner of each rectangle touches the graph.
4. Determine the area of each rectangle.
5. Sum these areas to arrive at an approximation for the total area under the curve.

DEFINITE INTEGRAL - Pg. 405
A definite integral is the limit as $n \rightarrow \infty$ (equivalently, $\Delta x \rightarrow 0$ ) of the Riemann sum.
Exact Area $=\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\int_{a}^{b} f(x) d x$

## Section 4.3 - Area and Definite Integrals

DEFINITE INTEGRAL - Pg. 414
$\int_{a}^{b} f(x) d x=F(b)-F(a)$
Where $a$ is lower limit and $b$ is higher limit.

THE FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS - Pg. 415
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\int_{a}^{b} f(x) d x=F(b)-F(a)$

## Section 4.4 - Properties of Definite Integrals

## ADDITIVE PROPERTY OF DEFINITE INTEGRALS - Pg. 425

$\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x$
For $a<b<c$
Useful for piecewise functions.

AREA OF REGION BOUNDED BY TWO GRAPHS - Pg. 428
$\int_{a}^{b}[f(x)-g(x)] d x$
Where $f(x) \geq g(x)$ over the interval $[a, b]$

## STEPS TO FIND AREA OF REGION BOUNDED BY TWO GRAPHS

1. Sketch graphs to determine which one is the upper graph.
2. Set $f(x)=g(x)$ and solve for $x$. These $x$-values are the limits of integration.
3. Set up integral by substituting the appropriate functions as the $f(x)$ and $g(x)$ into the formula above.
4. Simplify $f(x)-g(x)$ to get one polynomial.
5. Integrate.

AVERAGE VALUE OF A FUNCTION - Pg. 431
$y_{a v}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

## Section 4.5 - Integration Techniques: Substitution

Power Rule
$\int u^{r} d u=\frac{u^{r+1}}{r+1}+C, \quad r \neq-1$
Exponential Rule (base e)
$\int e^{u} d u=e^{u}+C$

Natural Logarithm Rule
$\int \frac{1}{u} d u=\ln |u|+C, \quad$ or $\quad \int \frac{1}{u} d u=\ln u+C, \quad$ if $u>0$

## STRATEGY FOR SUBSTITUTION - Pg. 442

1. Decide which rule is appropriate; see above.
a. If Power Rule, let $u$ be the base.
b. If Exponential Rule (base e), let $u$ be the expression in the exponent.
c. If Natural Logarithm Rule, let $u$ be the denominator.
2. Determine du.
3. Ensure substitution accounts for all factors in integrand. May need to insert constants or make an extra substitution.
4. Integrate.
5. Reverse the substitution. If there are bounds, evaluate integral after substitution has been reversed.
6. Check by differentiating.

## Chapter 5 - Applications of Integration

## Section 5.1 - An Economics Application: Consumer Surplus and Producer Surplus

CONSUMER SURPLUS (DEMAND CURVE) - Pg. 475
Consumer surplus is defined for the point $(Q, P)$ as
$\int_{0}^{Q} D(x) d x-Q P$
Where,
$Q$ is Quantity
$P$ is Price
$D(x)$ is total utility
$Q P$ is total cost

Consumer surplus is the "pleasure received but did not pay for." Aka Utility or $U$.

PRODUCER SURPLUS (SUPPLY CURVE) - Pg. 476
Producer surplus is defined for the point $(Q, P)$ as
$Q P-\int_{0}^{Q} S(x) d x$
Where,
$Q$ is Quantity
$P$ is Price
$Q P$ is revenue
$S(x)$ is total cost

Producer surplus is a contribution to profit.

EQUILIBRIUM POINT ( $x_{E}, p_{E}$ ) - Pg. 477
$D(x)=S(x)$
Where,
$x_{E}=Q$
$p_{E}=P$
Solve for $x$ then substitute into either $D(x)$ or $S(x)$ to find $y$.

CONSUMER SURPLUS AT THE EQUILIBRIUM POINT - Pg. 478
$\int_{0}^{x_{E}} D(x) d x-x_{E} p_{E}$
Where,
$D(x)$ is total utility
$x_{E} p_{E}$ is total cost

PRODUCER SURPLUS AT THE EQUILIBRIUM POINT - Pg. 478
$x_{E} p_{E}-\int_{0}^{x_{E}} S(x) d x$
Where,
$x_{E} p_{E}$ is revenue
$S(x)$ is total cost

