

Graphs with **Positive Slope** – Graph slants up from left to right.

Graphs with <u>Negative</u> Slope – Graph slants down from left to right.

Graphs with Zero Slope – Graph is horizontal.

Graphs with <u>Undefined</u> Slope – Graph is vertical.

Graphs with Zero Slope m = 0

Slope Formula

The slope, *m*, is a *number* that represents the slant, or tilt, of the line. It can be '+ decimal, or fraction. The slope is no

$$m = \frac{1}{x_2 - x_1}$$
 find the slope
of a point.
 $m = \frac{1}{x_2 - x_1}$ find the slope
 $m = \frac{1}{x_2 - x_1}$ find the slope
 $m = \frac{1}{x_2 - x_1}$ find the slope
 $m = \frac{1}{x_1 - x_1}$
 $m = \frac{1}{x_1 - x_$

When given two points and are asked to pe, use the Slope Formula.

 y_2

T 1 1 1

Examples

Positive Slope:

Fi and (-7,1).

 $y_2 - y_1$

$$m = \frac{1-6}{-7-(-2)}$$
 \Rightarrow $\frac{-5}{-7+2}$ \Rightarrow $\frac{-5}{-5}$ \Rightarrow $m = 1$

Negative Slope:

Zero Slope:

1

Fi) and (0,1). x_2, y_2 $m = \frac{1-11}{0-(-6)}$ \Rightarrow $\frac{-10}{6}$ \Rightarrow $\frac{-5}{3}$ \Rightarrow $m = -\frac{5}{3}$

> Find the slope of the line containing the points (4,5) and (0,5). x_1, y_1 x_2, y_2

$$m = \frac{5-5}{0-4}$$
 \Rightarrow $\frac{0}{-4}$ \Rightarrow $m = 0$

Undefined Slope: Find the slope of the line containing the points (-3,6) and (-3,-6). x_1, y_1 x_2, y_2 $m = \frac{-6-6}{-3-(-3)} \Rightarrow \frac{-12}{-3+3} \Rightarrow \frac{-12}{0} \Rightarrow m = undefined$

Slope-Intercept Formula

When given an equation and are asked to find the slope, use the Slope-Intercept Formula.

y = mx + b

The *number and sign* touching *x* on its left side is the slope, *m*.

The letter *b* represents the *y*-coordinate of the *y*-intercept, (0, *b*). The '+' in front of the *b* in the formula is a generic plus sign. The *b* itself can be positive, negative, or zero. If *b* is zero, it will not be listed in the original equation: y = mx.

Examples	Find the slope and y-intercept.	y = -5x	is the slope. That nu the x in your answer	m touching x on its left side mber is -5 . <i>Do not</i> include . The y-intercept is $(0, 0)$.
	Find the slope and y-intercept.	y = 1.57x - 4	The slope can be a d Here, $m = 1.57$. Th	decimal or a fraction. e y-intercept is $(0, -4)$.
	Find the slope and y-intercept.	y = -3 - x	The slope is -1 , since touching x on its left. The two terms have	ce that is the <i>number and sign</i> t side. The y-intercept is $(0, -3)$. simply been switched.
Your Turn	Find the slope, if any and y-intercept.	, a) $y = 10$	b) $x = -6$	Answers: a) $m = 0$, y-intercept is $(0, 10)$.

Courtesy of George Hartas

b) m = undefined.