Solve fractional equation using either Method A or Method B.

Example: $\quad \frac{2}{7} x+\frac{1}{2}=3$

Method A:

Eliminate both fractions at the same time.

Step 1: Find the lowest common multiple (LCM) of the two denominators, 7 and 2. To do so, we focus on the larger of the two numbers, 7. Does the 2 divide evenly into 7? No. Continue by going to the next higher multiple of 7 , which is 14 . Does the 2 divide evenly into 14 ? Yes. We already know that the 7 divides evenly into 14 since it is a multiple of 7 . So the LCM of 2 and 7 is 14 .

Step 2: Multiply each term by 14 to eliminate the 7 in the denominator of the term $\frac{2}{7}$ and the 2 in the denominator of the term $\frac{1}{2}$ at the same time.
(14) $\frac{2}{7} x+(14) \frac{1}{2}=(14) 3$

Reference equation above:
$\mathbf{1}^{\text {st }}$ Term: (14) $\frac{2}{7} x$ The 7 goes into 14 two times so we are left with $2 \cdot 2 x$ resulting in $4 x$ $\mathbf{2}^{\text {nd }} \mathbf{T e r m : ~ (1 4) ~} \frac{1}{2}$ The 2 goes into 14 seven times so we are left with $7 \cdot 1$ resulting in 7 $3^{\text {rd }}$ Term: (14) 3 The 14 multiplies with the 3 resulting in 42

This is what the equation looks like after eliminating the 7 and the 2 in the denominators:
$4 x+7=42$

Fractions have been eliminated. Now solve for x with the remaining integers....

Example: $\quad \frac{2}{7} x+\frac{1}{2}=3$

Method B:

Eliminate one fraction at a time.

Step 1: Multiply each term by 7 to eliminate the 7 in the denominator of the $1^{\text {st }}$ term $\frac{2}{7}$
(7) $\frac{2}{7} x+(7) \frac{1}{2}=(7) 3$

Reference equation above:

$\mathbf{1}^{\text {st }}$ Term: (7) $\frac{2}{7} x$ The 7's cancel leaving $2 x$
$2^{\text {nd }} \mathbf{T e r m : ~ (7) ~} \frac{1}{2}$ The 7 multiplies with the numerator 1 resulting in $\frac{7}{2}$
$3^{\text {rd }}$ Term: (7) 3 The 7 multiplies with the 3 resulting in 21
This is what the fractional equation looks like after eliminating the 7 in the denominator:
$2 x+\frac{7}{2}=21$
Step 2: multiply each term by 2 to eliminate the 2 in denominator of the $2^{\text {nd }} \operatorname{term} \frac{7}{2}$
(2) $2 x+(2) \frac{7}{2}=(2) 21$

Reference equation above:
$\mathbf{1}^{\text {st }}$ Term: (2) $2 x$ The 2 multiplies with the $2 x$ resulting in $4 x$
$2^{\text {nd }}$ Term: (2) $\frac{7}{2}$ The 2's cancel leaving 7
$3^{\text {rd }}$ Term: 21 The 2 multiplies with the 21 resulting in 42
This is what the equation looks like after eliminating the 2 in the denominator:
$4 x+7=42$
Fractions have been eliminated. Now solve for x with the remaining integers....

