Solve fractional equation using either Method A or Method B.

Example: $\frac{2}{7}x + \frac{1}{2} = 3$

Method A:

Eliminate both fractions at the same time.

Step 1: Find the lowest common multiple (LCM) of the two denominators, 7 and 2. To do so, we *focus on the larger* of the two numbers, 7. Does the 2 divide evenly into 7? No. Continue by going to the next higher multiple of 7, which is 14. Does the 2 divide evenly into 14? Yes. We already know that the 7 divides evenly into 14 since it is a multiple of 7. So the LCM of 2 and 7 is 14.

Step 2: Multiply each term by 14 to eliminate the 7 in the denominator of the term $\frac{2}{7}$ and the 2 in the denominator of the term $\frac{1}{2}$ at the same time.

$$(14)\frac{2}{7}x + (14)\frac{1}{2} = (14)3$$

Reference equation above:

1st Term: (14) $\frac{2}{7}x$ The 7 goes into 14 two times so we are left with 2 • 2x resulting in 4x 2nd Term: (14) $\frac{1}{2}$ The 2 goes into 14 seven times so we are left with 7 • 1 resulting in 7 3rd Term: (14) 3 The 14 multiplies with the 3 resulting in 42

This is what the equation looks like after eliminating the 7 and the 2 in the denominators:

$$4x + 7 = 42$$

Fractions have been eliminated. Now solve for x with the remaining integers....

Example: $\frac{2}{7}x + \frac{1}{2} = 3$

Method B:

Eliminate one fraction at a time.

Step 1: Multiply each term by 7 to eliminate the 7 in the denominator of the 1st term $\frac{2}{7}$

 $(7)\,\frac{2}{7}\,x + (7)\,\frac{1}{2} = (7)\,3$

Reference equation above:

1st Term: (7) $\frac{2}{7}x$ The 7's cancel leaving 2x2nd Term: (7) $\frac{1}{2}$ The 7 multiplies with the numerator 1 resulting in $\frac{7}{2}$ 3rd Term: (7) 3 The 7 multiplies with the 3 resulting in 21

This is what the fractional equation looks like after eliminating the 7 in the denominator:

$$2x + \frac{7}{2} = 21$$

Step 2: multiply each term by 2 to eliminate the 2 in denominator of the 2^{nd} term $\frac{7}{2}$

(2) $2x + (2)\frac{7}{2} = (2)21$

Reference equation above: 1^{st} Term: (2) 2x The 2 multiplies with the 2x resulting in 4x 2^{nd} Term: (2) $\frac{7}{2}$ The 2's cancel leaving 7 3^{rd} Term: 21 The 2 multiplies with the 21 resulting in 42

This is what the equation looks like after eliminating the 2 in the denominator:

$$4x + 7 = 42$$

Fractions have been eliminated. Now solve for x with the remaining integers....

Courtesy of George Hartas