EQUATIONS

STEPS

1. Multiply signed number touching left parenthesis (if any) with each term inside.
a. If only a negative sign '-' touches left parenthesis, distribute the '-' inside of parentheses by changing the sign of each term to its opposite sign.
2. Collect like terms (if any) on the same side of the equals sign.
a. Left side: collect like terms, variable terms (x-terms) or constant terms (numbers).
b. Right side: collect like terms, as above.
3. Move x-term (if any) from the right of the equals sign to the left.
a. Mentally note the current sign ('+' or '-') of that x-term.
b. Change that x-term's sign to its opposite to move it to the left.
i. Right side: x-term 'zeroes-out' and is gone.
ii. Left side: collect x-term already on the left (if any) with the x-term moved from right.
4. Move constant term (if any) from the left of the equals sign to the right.
a. Mentally note the current sign ('+' or '-') of that constant term.
b. Change that constant term's sign to its opposite to move it to the right.
i. Left side: constant term 'zeroes-out' and is gone.
ii. Right side: collect constant term already on the right (if any) with the constant term moved from left.
5. Divide by coefficient of x (including its sign) to get x by itself on the left.
a. Left side: coefficient 'cancels' (becomes 1), which leaves x by itself.
b. Right side: divide number by coefficient of x, which results in the answer.

NOTES

- GOAL: Move x 's to the left and move constants to the right, until you have: $x=\#$.
- Use pencil so any mistakes can be erased.
- Left or right refers to the left side or right side of the equals sign ' $=$ '.
- Before writing anything on paper, think about the goal for that step.
- After you mentally commit to the correct action, then write it down.
- Do not write two or more steps on one line. Instead, write each step on a new line, keeping the equals sign lined up vertically under the previous line.
- Optionally, check your answer by substituting the result into all x 's of original equation to verify that the numerical value of the left side equals the right side.

Solve:

STEP 1: If only a '-' touches left parenthesis, change sign of each term to its opposite.

STEP 2: Collect like terms on the same side of the equals sign.

$-5 x+6=16$

STEP 3: Move x-term from the right of the equals sign to the left. Sign of x-term was '-' so write its opposite ' + ' below x-term.

STEP 3: To keep equation balance, copy \& paste the ' $+x$ ' to the left side under the like term ' $-6 x$ '. On right, x-term 'zeroes-out'. On left, the ' $+x$ ' is combined with ' $-6 x$ ' to get ' $-5 x$ '.

STEP 4: Move constant term from the left of the equals sign to the right. Sign of constant term was ' + ' so write its opposite '-' below constant term.

STEP 4: To keep equation balance, copy \& paste the ' -6 ' to the right side under the like term ' 16 '. On left, constant term 'zeroes-out'. On right, the ' -6 ' is combined with ' 16 ' to get ' 10 '.

STEP 5: Divide by coefficient of x (including its sign) to get x by itself on the left. Use the division bar to specify division. Do not divide by x also.

STEP 5: To keep equation balance, copy \& paste the division by ' -5 ' to the right side under the ' 10 '. On left, the ' -5 ' coefficient 'cancels' (becomes 1), which leaves x by itself. On right, the ' 10 ' is divided by ' -5 ' which results in the answer of ' -2 '.

NOTES:

- Goal completed since we have the form: $x=$ \#.
- Sometimes the answer is a reduced fraction.

