CASE 1: Middle term is ' + ' and last term is ' + '. $7 x^{2}+37 x+10$

Step 1: Factor out any Greatest Common Factors (GCF). None here.
Step 2: Ensure a ' + ' leading coefficient. Factor out ' -1 ' if needed. None here.
Step 3: Draw a four-square box.

Step 4: Write leading term $7 x^{2}$ in top-left box. Write last term 10 in bottom-right box.

$7 x^{2}$	
	10

Step 5: Multiply leading coefficient 7 with last term 10 to get $7 \cdot 10=70$.
Step 6: List all factors of 70 starting with $1 \cdot 70$ and sequentially work up from 1 ; see table below. To determine the signs of the two factors we are seeking in the table, look at the sign of the last term ' 10 ' of the trinomial. That sign is '+' which means that both factors have the same sign, either both being ' + ' or both being ' - '. To find which sign, look at the sign of the middle term $37 x$ of the trinomial. That sign is ' + ' which means that both factors we are seeking are also ' + '. Therefore there is no need to list negative factors of 70 in the table, such as $-1 \cdot-70,-2 \cdot-35$, etc.

Factors of 70	Sum
$1 \cdot 70$	71
$2 \cdot 35$	37
$5 \cdot 14$	19
$7 \cdot 10$	17

Step 7: Find the paired factors of 70 that add up to the middle term 37. They are $2 \cdot 35$.

Step 8: Write the factors 2 and 35 in the two remaining boxes. It does not matter which factor goes into which box. Include an ' x ' after each factor in the box.

$7 x^{2}$	$2 x$
$35 x$	10

Step 9: Factor out Row 1 then Row 2 to the left side. Factor out Column 1 then Column 2 to the top.

Step 10: The resulting factors on the left side and top provide the answer: $(7 x+2)(x+5)$.

Characteristics of the Box:

- Row 1: Since $7 x^{2}$ is ' + ' the sign of the left side factor x will also be ' + '.
- Row 2: Since $35 x$ is ' + ' the sign of the left side factor 5 will also be ' + '.
- Column 1: Since $7 x^{2}$ is ' + ' the sign of the top factor $7 x$ will also be ' + '.
- Column 2: Since $2 x$ is ' + ' the sign of the top factor 2 will also be ' + '.
- Miscellaneous:
o Since 10 in the bottom right box is '+' the signs of the two terms factored out must be the same: ' 5 ' on left side in Row 2 and ' 2 ' on top in Column 2. Because the sign of middle term $37 x$ of the trinomial is ' + ' the signs of both ' 5 ' and ' 2 ' are also ' + ', as mentioned in Step 6.
o If the last term of the trinomial is ' + ' as in this case 10 , look at the sign of the middle term $37 x$ to determine the two signs of the binomials in the answer. Since the middle term is ' + ' the template of the binomial factors in the answer will be $(+)(+)$.
o As a check, the terms factored out on left side and at top can be multiplied together to get the number in the corresponding box. For example, the Column 1 result $7 x$ multiplied by the Row 1 result x equals $7 x^{2}$ which is the term in the top-left box.
CASE 2: Middle term is '+' and last term is ' - '. $7 x^{2}+33 x-10$

Step 1: Factor out any Greatest Common Factors (GCF). None here.
Step 2: Ensure a ' + ' leading coefficient. Factor out ' -1 ' if needed. None here.
Step 3: Draw a four-square box.

Step 4: Write leading term $7 x^{2}$ in top-left box. Write last term -10 in bottom-right box.

$7 x^{2}$	
	-10

Step 5: Multiply leading coefficient 7 with last term -10 to get $7 \cdot-10=-70$.
Step 6: Since the product of $7 \cdot-10=-70$, we know that the signs of the two factors we are seeking must be opposite. List all factors of -70 starting with $-1 \cdot 70$, then $1 \cdot-70$, and sequentially work up from 1; see table below. There is no need to list factors of 70 in the table that have the same sign, such as $-1 \cdot-70,1 \cdot 70$, etc. because that will result in a +70 which we do not have in this case.

Factors of -70	Sum
$-1 \cdot 70$	69
$1 \cdot-70$	-69
$-2 \cdot 35$	33
$2 \cdot-35$	-33
$-5 \cdot 14$	9
$5 \cdot-14$	-9
$-7 \cdot 10$	3
$7 \cdot-10$	-3

Step 7: Find the paired factors of -70 that add up to the middle term 33. They are $-2 \cdot 35$ because the larger of the two factors must be '+' to get 33 when added together.

Step 8: Write the factors -2 and 35 in the two remaining boxes. It does not matter which factor goes into which box. Include an ' x ' after each factor in the box.

$7 x^{2}$	$-2 x$
$35 x$	-10

Step 9: Factor out Row 1 then Row 2 to the left side. Factor out Column 1 then Column 2 to the top.

Step 10: The resulting factors on the left side and top provide the answer: $(7 x-2)(x+5)$.

Characteristics of the Box:

- Row 1: Since $7 x^{2}$ is ' + ' the sign of the left side factor x will also be ' + '.
- Row 2: Since $35 x$ is ' + ' the sign of the left side factor 5 will also be ' + '.
- Column 1: Since $7 x^{2}$ is ' + ' the sign of the top factor $7 x$ will also be ' + '.
- Column 2: Since $-2 x$ is ' - ' the sign of the top factor 2 will also be ' - '.
- Miscellaneous:
o Since - 10 in the bottom right box is '-' the signs of the two terms factored out must be opposite: ' 5 ' on left side in Row 2 and ' -2 ' on top in Column 2.
o If the last term of the trinomial is ' - ' as in this case -10 , the template of the binomial factors in the answer will either be $(-)(+)$ or $(+)(-)$.
o As a check, the terms factored out on left side and at top can be multiplied together to get the number in the corresponding box. For example, the Column 1 result $7 x$ multiplied by the Row 1 result x equals $7 x^{2}$ which is the term in the top-left box.

CASE 3: Middle term is ' - ' and last term is ' + '.
 $7 x^{2}-37 x+10$

Step 1: Factor out any Greatest Common Factors (GCF). None here.
Step 2: Ensure a ' + ' leading coefficient. Factor out ' -1 ' if needed. None here.
Step 3: Draw a four-square box.

Step 4: Write leading term $7 x^{2}$ in top-left box. Write last term 10 in bottom-right box.

$7 x^{2}$	
	10

Step 5: Multiply leading coefficient 7 with last term 10 to get $7 \cdot 10=70$.
Step 6: List all factors of 70 starting with $1 \cdot 70$ and sequentially work up from 1 ; see table below. To determine the signs of the two factors we are seeking in the table, look at the sign of the last term ' 10 ' of the trinomial. That sign is '+' which means that both factors have the same sign, either both being ' + ' or both being ' - '. To find which sign, look at the sign of the middle term $-37 x$ of the trinomial. That sign is '-' which means that both factors we are seeking are also ' - '. Therefore there is no need to list positive factors of 70 in the table, such as $1 \cdot 70,2 \cdot 35$, etc.

Factors of 70	Sum
$-1 \cdot-70$	-71
$-2 \cdot-35$	-37
$-5 \cdot-14$	-19
$-7 \cdot-10$	-17

Step 7: Find the paired factors of 70 that add up to the middle term -37 . They are $-2 \cdot-35$.

Step 8: Write the factors -2 and -35 in the two remaining boxes. It does not matter which factor goes into which box. Include an ' x ' after each factor in the box.

$7 x^{2}$	$-2 x$
$-35 x$	10

Step 9: Factor out Row 1 then Row 2 to the left side. Factor out Column 1 then Column 2 to the top.

Step 10: The resulting factors on the left side and top provide the answer: $(7 x-2)(x-5)$.

Characteristics of the Box:

- Row 1: Since $7 x^{2}$ is ' + ' the sign of the left side factor x will also be ' + '.
- Row 2: Since $-35 x$ is ' - ' the sign of the left side factor 5 will also be ' - '.
- Column 1: Since $7 x^{2}$ is ' + ' the sign of the top factor $7 x$ will also be ' + '.
- Column 2: Since $-2 x$ is ' - ' the sign of the top factor 2 will also be ' - '.
- Miscellaneous:
o Since 10 in the bottom right box is ' + ' the signs of the two terms factored out must be the same: ' 5 ' on left side in Row 2 and ' 2 ' on top in Column 2. Because the sign of middle term $-37 x$ of the trinomial is ' - ' the signs of both ' 5 ' and ' 2 ' are also ' - ', as mentioned in Step 6.
o If the last term of the trinomial is ' + ' as in this case +10 , look at the sign of the middle term $-37 x$ to determine the two signs of the binomials in the answer. Since the middle term is '-’ the template of the binomial factors in the answer will be (-)(-).
o As a check, the terms factored out on left side and at top can be multiplied together to get the number in the corresponding box. For example, the Column 1 result $7 x$ multiplied by the Row 1 result x equals $7 x^{2}$ which is the term in the top-left box.

CASE 4: Middle term is ' - ' and last term is ' - .
 $7 x^{2}-33 x-10$

Step 1: Factor out any Greatest Common Factors (GCF). None here.
Step 2: Ensure a ' + ' leading coefficient. Factor out ' -1 ' if needed. None here.
Step 3: Draw a four-square box.

Step 4: Write leading term $7 x^{2}$ in top-left box. Write last term -10 in bottom-right box.

$7 x^{2}$	
	-10

Step 5: Multiply leading coefficient 7 with last term -10 to get $7 \cdot-10=-70$.
Step 6: Since the product of $7 \cdot-10=-70$, we know that the signs of the two factors we are seeking must be opposite. List all factors of -70 starting with $-1 \cdot 70$, then $1 \cdot-70$, and sequentially work up from 1; see table below. There is no need to list factors of 70 in the table that have the same sign, such as $-1 \cdot-70,1 \cdot 70$, etc. because that will result in a +70 which we do not have in this case.

Factors of -70	Sum
$-1 \cdot 70$	69
$1 \cdot-70$	-69
$-2 \cdot 35$	33
$2 \cdot-35$	-33
$-5 \cdot 14$	9
$5 \cdot-14$	-9
$-7 \cdot 10$	3
$7 \cdot-10$	-3

Step 7: Find the paired factors of -70 that add up to the middle term -33 . They are $2 \cdot-35$ because the larger of the two factors must be '-' to get -33 when added together.

Step 8: Write the factors 2 and -35 in the two remaining boxes. It does not matter which factor goes into which box. Include an ' x ' after each factor in the box.

$7 x^{2}$	$2 x$
$-35 x$	-10

Step 9: Factor out Row 1 then Row 2 to the left side. Factor out Column 1 then Column 2 to the top.

Step 10: The resulting factors on the left side and top provide the answer: $(7 x+2)(x-5)$.

Characteristics of the Box:

- Row 1: Since $7 x^{2}$ is ' + ' the sign of the left side factor x will also be ' + '.
- Row 2: Since $-35 x$ is ' - ' the sign of the left side factor 5 will also be ' - '.
- Column 1: Since $7 x^{2}$ is ' + ' the sign of the top factor $7 x$ will also be ' + '.
- Column 2: Since $2 x$ is ' + ' the sign of the top factor 2 will also be ' + '.
- Miscellaneous:
o Since -10 in the bottom right box is '-' the signs of the two terms factored out must be opposite: ‘ -5 ' on left side in Row 2 and ' 2 ' on top in Column 2.
o If the last term of the trinomial is ' - ' as in this case -10 , the template of the binomial factors in the answer will either be $(-)(+)$ or $(+)(-)$.
o As a check, the terms factored out on left side and at top can be multiplied together to get the number in the corresponding box. For example, the Column 1 result $7 x$ multiplied by the Row 1 result x equals $7 x^{2}$ which is the term in the top-left box.

